Linear Algebra lecture3 note

Matrix multiplication(4 ways!)

Inverse of A

Gauss-Jordan / find inverse of A

 


Matrix multiplication

1、点积法

Linear Algebra lecture3 note

Linear Algebra lecture3 note

2、matrix * column=comb of columns

Linear Algebra lecture3 note

columns of C are comb of cols of A

3、matrix * row = comb of rows

Linear Algebra lecture3 note

rows of C are comb of rows of B

4、matrix * matrix=comb of row*col

Linear Algebra lecture3 note

AB=sum of (cols of A )*(rows of B)

another example:

Linear Algebra lecture3 note

*5、Block (分块行 * 分块列)

Linear Algebra lecture3 note

 


Inverses( Square matrices)

if  inverse of A exits, then

Linear Algebra lecture3 note

invertible, non-singular

思考如何求此矩阵的逆,矩阵及其逆应满足条件:

Linear Algebra lecture3 note

设逆矩阵由元素a,b,c,d构成,如图:

Linear Algebra lecture3 note

Linear Algebra lecture3 note

以上讨论的都是逆矩阵存在的情况,下面举例讨论逆矩阵不存在的情况(singular case,no inverse),

Linear Algebra lecture3 note

可以从以下三方面来解释:

1、行列式为0

2、假设A`存在,A中两列向量共线,所以不可能通过线性组合构成单位矩阵,AA`≠I,就没有A`的说法了

3、You can find a vector X with AX=0 (X≠0)

Linear Algebra lecture3 note

由于AX=0,假设A`存在,等式两边同时乘以A`,A`AX=A`0=0, IX=0,X=0 与 X≠0矛盾,故假设不成立

若矩阵中其中一列对线性组合毫无贡献,则矩阵不可能有逆

 


Gauss Jordan(solve 2 equations at once)

Linear Algebra lecture3 note

Linear Algebra lecture3 note

可得到A的逆矩阵形式为:

Linear Algebra lecture3 note

解释推导:

Linear Algebra lecture3 note

上一篇:java动态编译类文件并加载到内存中


下一篇:JavaWeb基础:Servlet