markdown 数学公式写法总结
Markdown 中插入数学公式
单行公式
$...公式块...$
多行公式
$$...公式块...$$
1 希腊字母
字母 |
英文注音 |
大写 |
写法 |
小写 |
写法 |
阿尔法 |
alpha |
\(A\) |
A |
\(\alpha\) |
\alpha |
贝塔 |
beta |
\(C\) |
B |
\(\beta\) |
\beta |
伽马 |
gamma |
\(\Gamma\) |
\Gamma |
\(\gamma\) |
\gamma |
德尔塔 |
delta |
\(\Delta\) |
\Delta |
\(\delta\) |
\delta |
伊普西龙 |
epsilon |
\(E\) |
E |
\(\epsilon\) |
\epsilon |
截塔 |
zeta |
\(Z\) |
Z |
\(\zeta\) |
\zeta |
艾塔 |
eta |
\(H\) |
H |
\(\eta\) |
\eta |
西塔 |
theta |
\(\Theta\) |
\Theta |
\(\theta\) |
\theta |
约塔 |
iota |
\(I\) |
I |
\(\iota\) |
\iota |
卡帕 |
kappa |
\(K\) |
K |
\(\kappa\) |
\kappa |
兰布达 |
lambda |
\(\Lambda\) |
\Lambda |
\(\lambda\) |
\lambda |
缪 |
mu |
\(M\) |
M |
\(\mu\) |
\mu |
纽 |
nu |
\(N\) |
N |
\(\nu\) |
\nu |
科西 |
xi |
\(\Xi\) |
\Xi |
\(\xi\) |
\xi |
奥密克戎 |
omicron |
\(O\) |
O |
\(\omicron\) |
\omicron |
派 |
pi |
\(\Pi\) |
\Pi |
\(\pi\) |
\pi |
肉 |
rho |
\(P\) |
P |
\(\rho\) |
\rho |
西格玛 |
sigma |
\(\Sigma\) |
\Sigma |
\(\sigma\) |
\sigma |
套 |
tau |
\(T\) |
T |
\(\tau\) |
\tau |
宇普西龙 |
upsilon |
\(\Upsilon\) |
\Upsilon |
\(\upsilon\) |
\upsilon |
佛爱 |
phi |
\(\Phi\) |
\Phi |
\(\phi\) |
\phi |
西 |
chi |
\(X\) |
X |
\(\chi\) |
\chi |
普西 |
psi |
\(\Psi\) |
\Psi |
\(\psi\) |
\psi |
欧米伽 |
omega |
\(\Omega\) |
\Omega |
\(\omega\) |
\omega |
2 上下标
2.1 上标
单个上标 |
写法 |
多个上标 |
写法 |
\(x^y\) |
x^y |
\(x^{yz}\) |
x^{yz} |
2.2 下标
单个下标 |
写法 |
多个下标 |
写法 |
\(x_y\) |
x_y |
\(x_{yz}\) |
x_{yz} |
3 括号
3.1 小括号
形式 |
写法 |
\((1+1)\) |
( ) |
\(\left( \frac{x}{y} \right)\) |
\left( \right) |
3.2 大括号
形式 |
写法 |
\(\{1+1\}\) |
\{ \} |
\(\left\{ \frac{x}{y} \right\}\) |
\left\{ \right \} |
3.3 方括号
形式 |
写法 |
\([1+1]\) |
[ ] |
\(\left[ \frac{x}{y} \right]\) |
\left[ \right] |
3.5 尖括号
形式 |
写法 |
\(\langle 1+1 \rangle\) |
\langle \rangle |
$\left \langle \frac{x}{y} \right \rangle $ |
\left \langle \right \rangle |
3.6 上取整
形式 |
写法 |
\(\lceil x \rceil\) |
\lceil \rceil |
\(\left \lceil \frac{x}{y} \right \rceil\) |
\left \ceil \right \rceil |
3.7 下取整
形式 |
写法 |
\(\lfloor x \rfloor\) |
\lfloor \rfloor |
\(\left \lfloor \frac{x}{y} \right \rfloor\) |
\left \lfloor \right \rfloor |
4 算术运算符
形式 |
写法 |
\(+\) |
+ |
\(-\) |
- |
\(\times\) |
\times |
\(\div\) |
\div |
\(\pm\) |
\pm |
\(\mp\) |
\mp |
\(\cdot\) |
\cdot |
\(\ast\) |
\ast |
\(/\) |
/ |
$ |
x |
\(\overline {xyz}\) |
\overline {xyz} |
5 逻辑运算符
形式 |
写法 |
\(=\) |
= |
\(>\) |
> |
\(<\) |
< |
\(\geq\) |
\geq |
\(\leq\) |
\leq |
\(\neq\) |
\neq |
\(\ngeq\) |
\ngeq |
\(\not \geq\) |
\not \geq |
\(\nleq\) |
\nleq |
\(\not \leq\) |
\not \leq |
\(\approx\) |
\approx |
\(\equiv\) |
\equiv |
6 集合运算
形式 |
写法 |
\(\in\) |
\in |
\(\notin\) |
\notin |
\(\not \in\) |
\not \in |
\(\subset\) |
\subset |
\(\supset\) |
\supset |
\(\subseteq\) |
\subseteq |
\(\supseteq\) |
\supseteq |
\(\subsetneq\) |
\subsetneq |
\(\supsetneq\) |
\supsetneq |
\(\not \subset\) |
\not \subset |
\(\not \supset\) |
\not supset |
\(\cup\) |
\cup |
\(\cap\) |
\cap |
\(\setminus\) |
\setminus |
\(\bigodot\) |
\bigodot |
\(\bigotimes\) |
\bigotimes |
\(\mathbb{R}\) |
\mathbb{R} |
\(\mathbb{Z}\) |
\mathbb{Z} |
\(\mathbb{N}\) |
\mathbb{N} |
\(\emptyset\) |
\emptyset |
7 数学符号
形式 |
写法 |
\(\infty\) |
\infty |
\(\imath\) |
\imath |
\(\jmath\) |
\jmath |
\(\hat{a}\) |
\hat{a} |
\(\check{a}\) |
\check{a} |
\(\breve{a}\) |
\breve{a} |
\(\tilde{a}\) |
\tilde{a} |
\(\bar{a}\) |
\bar{a} |
\(\vec{a}\) |
\vec{a} |
\(\acute{a}\) |
\acute{a} |
\(\grave{a}\) |
\grave{a} |
\(\mathring{a}\) |
\mathring{a} |
\(\dot{a}\) |
\dot{a} |
\(\ddot{a}\) |
\ddot{a} |
\(\dddot{a}\) |
\dddot{a} |
\(\uparrow\) |
\uparrow |
\(\Uparrow\) |
\Uparrow |
\(\downarrow\) |
\downarrow |
\(\Downarrow\) |
\Downarrow |
\(\leftarrow\) |
\leftarrow |
\(\Leftarrow\) |
\Leftarrow |
\(\rightarrow\) |
\rightarrow |
\(\Rightarrow\) |
\Rightarrow |
\(1,2\ldots,n\) |
1,2,\ldots,n |
\(1,2,\cdots,n\) |
1,2,\cdots,n |
\(\vdots\) |
\vdots |
\(\ddots\) |
\ddots |
\(\log_{x}{y}\) |
\log_{x}{y} |
\(\displaystyle \lim_{x \to \infty}{x^2}\) |
$\displaystyle \lim_{x \to \infty}{x^2} |
\(\frac{\partial x}{\partial y}\) |
\frac{\partial x}{\partial y} |
\(f(x^2)\stackrel{t=x^2}{=}f(t)\) |
f(x^2) \stackrel {t=x^2}{=}f(t) |
\(\%\) |
% |
\(\nabla\) |
\nabla |
\(\Delta\) |
\Delta |
\(\angle\) |
\angle |
\(\text{\S}\) |
\text{\s} |
\(\flat\) |
\flat |
\(\natural\) |
\natural |
\(\sharp\) |
\sharp |
\(\checkmark\) |
\checkmark |
\(\ll\) |
\ll |
\(\gg\) |
\gg |
\(\Leftrightarrow\) |
\Leftrightarrow |
\(\rightleftharpoons\) |
\rightleftharpoons |
\(\leftrightarrow\) |
\leftrightarrow |
\(\therefore\) |
\therefore |
\(\because\) |
\because |
8 积分
形式 |
写法 |
$\int $ |
\int |
\(\iint\) |
\iint |
\(\iiint\) |
\iiint |
\(\iiiint\) |
\iiiint |
\(\int_{t=1}^{t=8}\) |
\int_{t=1}^{t=8} |
\(\int_{0}^{\infty}\) |
\int_0^{\infty} |
\(\oint\) |
\oint |
\(\oiint\) |
\oiint |
\(\oiiint\) |
\oiiint |
9 连加、连乘
形式 |
写法 |
\(\sum\) |
\sum |
\(\sum_{t=1}^{n}\) |
\sum_{t=1}^n |
$\sum_{0}^{\infty} $ |
\sum_0^{\infty} |
\(\displaystyle \sum^{\infty}_{i=0}\) |
$\displaystyle \sum^{\infty}_{i=0} |
\(\prod\) |
\prod |
\(\displaystyle \prod_{i=1}^{k}\) |
\displaystyle \prod_{i=1}^k |
\(\bigcup\) |
\bigcup |
\(\bigcap\) |
\bigcap |
\(\min_{x_y}\) |
\min_{x_y} |
\(\max_{x_y}\) |
\max_{x_y} |
10 分式
形式 |
写法 |
\(\frac xy\) |
\frac xy |
\(\frac {x}{y}\) |
\frac {x}{y} |
\(\frac {xy}{mn}\) |
\frac {xy}{mn} |
\({a+b+1 \over x+y-1}\) |
{a+b+1 \over x+y-1} |
\[x=x_0+\frac {1}{x_1+\frac{2}{x_2+ \frac {3}{x_3+\frac{4}{...}}}}
\]
$$
x = x_0 + \frac {1}{x_1 + \frac {2}{x_2 + \frac {3}{x_3 + \frac {4}{...}}}}
$$
11 根式
形式 |
写法 |
\(\sqrt {x+y}\) |
\sqrt {x+y} |
\(\sqrt[7]{x+y}\) |
\sqrt[7]{x+y} |
12 多行分类
12.1 分段函数
\[f(x)
\begin{cases}
2x, & x \not = 0 \\
0, & x = 0
\end{cases}
\]
$$
f(x)
\begin{cases}
2x, & x \not = 0
0, & x =
\end{cases}
$$
12.2 公式换行
\[\begin{equation}\begin{split}
a & = b+c-d \\
& \quad +e-f \\
& = g+h \\
& = i
\end{split}\end{equation}
\]
$$
\begin{equation}\begin{split}
a & = b+c-d \\
& \quad +e-f \\
& = g+h \\
& = i
\end{split}\end{equation}
$$
12.3 左大括号
\[x =
\left\{
\begin{matrix}
f(x) & x > 1 \\
h(x) & x = 0 \\
g(x) & x < 0
\end{matrix}
\right.
\]
$$
x =
\left\{
\begin{matrix}
f(x) & x > 1 \\
h(x) & x = 0 \\
g(x) & x < 0
\end{matrix}
\right.
$$
12.4 右大括号
\[x =
\left.
\begin{matrix}
f(x) & x > 1 \\
h(x) & x = 0 \\
g(x) & x < 0
\end{matrix}
\right\}
\]
$$
x =
\left.
\begin{matrix}
f(x) & x > 1 \\
h(x) & x = 0 \\
g(x) & x < 0
\end{matrix}
\right\}
$$
13 矩阵
13.1 无括号矩阵
\[\begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix}
\]
$$
\begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix}
$$
13.2 小括号矩阵
\[\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}
\]
$$
\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}
$$
13.3 中括号矩阵
\[\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}
\]
$$
\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}
$$
13.4 大括号矩阵
\[\begin{Bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{Bmatrix}
\]
$$
\begin{Bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{Bmatrix}
$$
13.5 行列式
\[\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}
\]
$$
\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}
$$
13.6 模
\[\begin{Vmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{Vmatrix}
\]
$$
\begin{Vmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{Vmatrix}
$$
14 三角函数
样式 |
写法 |
\(sinx\) |
sinx |
\(cosx\) |
cosx |
\(tanx\) |
tanx |
\(cotx\) |
cotx |
$secx $ |
secx |
\(cscx\) |
cscx |
\(arctanx\) |
arctanx |
\(arcsinx\) |
arcsins |
\(arccosx\) |
arccosx |
\(arccotx\) |
arccotx |
\(arcsecx\) |
arcsecx |
\(arccscx\) |
arccscx |
15 表格
15.1 普通表格
item1 |
item2 |
item3 |
0 |
1 |
2 |
3 |
4 |
5 |
$$
| item1 | item2 | item3 |
| :----: | :----: | :----: |
| 0 | 1 | 2 |
| 3 | 4 | 5 |
$$
15.2 仅表头有直线
\[\begin{array}{c|lcr}
num & \text{item1} & \text{item2} & \text{item3} \\
\hline % \hline 表示在本行前加入一条直线
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11
\end{array}
\]
$$
\begin{array}{c|lcr} % clr 分别表示表格左对齐、居中、右对齐
num & \text{item1} & \text{item2} & \text{item3} \\
\hline % \hline 表示在本行前加入一条直线
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11
\end{array}
$$
16 公式标记与引用
\[x+y=0 \tag{1.1} \label{001}
\]
$$
% \tag{num} num 即是公式后边显示的编号
% \label{myLabel} myLabel 即是引用,若后边想要进行引用时,可以写上,否则不写
x+y=0 \tag{001} \label{001}
$$
\[a+b \stackrel {\eqref{001}} = 1
\]
$$
% 引用上述公式 x + y = 0
a+b \stackrel {\eqref{001}} = 1
$$