本节书摘来自华章社区《深入理解Spark:核心思想与源码分析》一书中的第3章,第3.7节创建和启动DAGScheduler,作者耿嘉安,更多章节内容可以访问云栖社区“华章社区”公众号查看
3.7 创建和启动DAGScheduler
DAGScheduler主要用于在任务正式交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建Job,将DAG中的RDD划分到不同的Stage,提交Stage,等等。创建DAG-Scheduler的代码如下。
@volatile private[spark] var dagScheduler: DAGScheduler = _
dagScheduler = new DAGScheduler(this)
DAGScheduler的数据结构主要维护jobId和stageId的关系、Stage、ActiveJob,以及缓存的RDD的partitions的位置信息,见代码清单3-32。
代码清单3-32 DAGScheduler维护的数据结构
private[scheduler] val nextJobId = new AtomicInteger(0)
private[scheduler] def numTotalJobs: Int = nextJobId.get()
private val nextStageId = new AtomicInteger(0)
private[scheduler] val jobIdToStageIds = new HashMap[Int, HashSet[Int]]
private[scheduler] val stageIdToStage = new HashMap[Int, Stage]
private[scheduler] val shuffleToMapStage = new HashMap[Int, Stage]
private[scheduler] val jobIdToActiveJob = new HashMap[Int, ActiveJob]
// Stages we need to run whose parents aren't done
private[scheduler] val waitingStages = new HashSet[Stage]
// Stages we are running right now
private[scheduler] val runningStages = new HashSet[Stage]
// Stages that must be resubmitted due to fetch failures
private[scheduler] val failedStages = new HashSet[Stage]
private[scheduler] val activeJobs = new HashSet[ActiveJob]
// Contains the locations that each RDD's partitions are cached on
private val cacheLocs = new HashMap[Int, Array[Seq[TaskLocation]]]
private val failedEpoch = new HashMap[String, Long]
private val dagSchedulerActorSupervisor =
env.actorSystem.actorOf(Props(new DAGSchedulerActorSupervisor(this)))
private val closureSerializer = SparkEnv.get.closureSerializer.newInstance()
在构造DAGScheduler的时候会调用initializeEventProcessActor方法创建DAGScheduler-EventProcessActor,见代码清单3-33。
代码清单3-33 DAGSchedulerEventProcessActor的初始化
private[scheduler] var eventProcessActor: ActorRef = _
private def initializeEventProcessActor() {
// blocking the thread until supervisor is started, which ensures eventProcess-Actor is
// not null before any job is submitted
implicit val timeout = Timeout(30 seconds)
val initEventActorReply =
dagSchedulerActorSupervisor ? Props(new DAGSchedulerEventProcessActor(this))
eventProcessActor = Await.result(initEventActorReply, timeout.duration).
asInstanceOf[ActorRef]
}
initializeEventProcessActor()
这里的DAGSchedulerActorSupervisor主要作为DAGSchedulerEventProcessActor的监管者,负责生成DAGSchedulerEventProcessActor。从代码清单3-34可以看出,DAGScheduler-ActorSupervisor对于DAGSchedulerEventProcessActor采用了Akka的一对一监管策略。DAG-SchedulerActorSupervisor一旦生成DAGSchedulerEventProcessActor,并注册到ActorSystem,ActorSystem就会调用DAGSchedulerEventProcessActor的preStart,taskScheduler于是就持有了dagScheduler,见代码清单3-35。从代码清单3-35我们还看到DAG-SchedulerEventProcessActor所能处理的消息类型,比如JobSubmitted、BeginEvent、CompletionEvent等。DAGScheduler-EventProcessActor接受这些消息后会有不同的处理动作。在本章,读者只需要理解到这里即可,后面章节用到时会详细分析。
代码清单3-34 DAGSchedulerActorSupervisor的监管策略
private[scheduler] class DAGSchedulerActorSupervisor(dagScheduler: DAGScheduler)
extends Actor with Logging {
override val supervisorStrategy =
OneForOneStrategy() {
case x: Exception =>
logError("eventProcesserActor failed; shutting down SparkContext", x)
try {
dagScheduler.doCancelAllJobs()
} catch {
case t: Throwable => logError("DAGScheduler failed to cancel all jobs.", t)
}
dagScheduler.sc.stop()
Stop
}
def receive = {
case p: Props => sender ! context.actorOf(p)
case _ => logWarning("received unknown message in DAGSchedulerActorSupervisor")
}
}
代码清单3-35 DAGSchedulerEventProcessActor的实现
private[scheduler] class DAGSchedulerEventProcessActor(dagScheduler: DAGS-cheduler)
extends Actor with Logging {
override def preStart() {
dagScheduler.taskScheduler.setDAGScheduler(dagScheduler)
}
/**
* The main event loop of the DAG scheduler.
*/
def receive = {
case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,
listener, properties)
case StageCancelled(stageId) =>
dagScheduler.handleStageCancellation(stageId)
case JobCancelled(jobId) =>
dagScheduler.handleJobCancellation(jobId)
case JobGroupCancelled(groupId) =>
dagScheduler.handleJobGroupCancelled(groupId)
case AllJobsCancelled =>
dagScheduler.doCancelAllJobs()
case ExecutorAdded(execId, host) =>
dagScheduler.handleExecutorAdded(execId, host)
case ExecutorLost(execId) =>
dagScheduler.handleExecutorLost(execId, fetchFailed = false)
case BeginEvent(task, taskInfo) =>
dagScheduler.handleBeginEvent(task, taskInfo)
case GettingResultEvent(taskInfo) =>
dagScheduler.handleGetTaskResult(taskInfo)
case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
dagScheduler.handleTaskCompletion(completion)
case TaskSetFailed(taskSet, reason) =>
dagScheduler.handleTaskSetFailed(taskSet, reason)
case ResubmitFailedStages =>
dagScheduler.resubmitFailedStages()
}
override def postStop() {
// Cancel any active jobs in postStop hook
dagScheduler.cleanUpAfterSchedulerStop()
}