深入理解Spark:核心思想与源码分析. 3.7 创建和启动DAGScheduler

3.7 创建和启动DAGScheduler

DAGScheduler主要用于在任务正式交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建Job,将DAG中的RDD划分到不同的Stage,提交Stage,等等。创建DAG-Scheduler的代码如下。

@volatile private[spark] var dagScheduler: DAGScheduler = _

    dagScheduler = new DAGScheduler(this)

DAGScheduler的数据结构主要维护jobId和stageId的关系、Stage、ActiveJob,以及缓存的RDD的partitions的位置信息,见代码清单3-32。

代码清单3-32 DAGScheduler维护的数据结构

private[scheduler] val nextJobId = new AtomicInteger(0)

private[scheduler] def numTotalJobs: Int = nextJobId.get()

private val nextStageId = new AtomicInteger(0)

 

private[scheduler] val jobIdToStageIds = new HashMap[Int, HashSet[Int]]

private[scheduler] val stageIdToStage = new HashMap[Int, Stage]

private[scheduler] val shuffleToMapStage = new HashMap[Int, Stage]

private[scheduler] val jobIdToActiveJob = new HashMap[Int, ActiveJob]

 

    // Stages we need to run whose parents aren't done

    private[scheduler] val waitingStages = new HashSet[Stage]

    // Stages we are running right now

    private[scheduler] val runningStages = new HashSet[Stage]

    // Stages that must be resubmitted due to fetch failures

    private[scheduler] val failedStages = new HashSet[Stage]

 

    private[scheduler] val activeJobs = new HashSet[ActiveJob]

 

    // Contains the locations that each RDD's partitions are cached on

    private val cacheLocs = new HashMap[Int, Array[Seq[TaskLocation]]]

    private val failedEpoch = new HashMap[String, Long]

 

    private val dagSchedulerActorSupervisor =

        env.actorSystem.actorOf(Props(new DAGSchedulerActorSupervisor(this)))

 

    private val closureSerializer = SparkEnv.get.closureSerializer.newInstance()

在构造DAGScheduler的时候会调用initializeEventProcessActor方法创建DAGScheduler-EventProcessActor,见代码清单3-33。

代码清单3-33 DAGSchedulerEventProcessActor的初始化

    private[scheduler] var eventProcessActor: ActorRef = _

private def initializeEventProcessActor() {

        // blocking the thread until supervisor is started, which ensures eventProcess-Actor is

        // not null before any job is submitted

        implicit val timeout = Timeout(30 seconds)

        val initEventActorReply =

            dagSchedulerActorSupervisor ? Props(new DAGSchedulerEventProcessActor(this))

        eventProcessActor = Await.result(initEventActorReply, timeout.duration).

            asInstanceOf[ActorRef]

}

 

initializeEventProcessActor()

这里的DAGSchedulerActorSupervisor主要作为DAGSchedulerEventProcessActor的监管者,负责生成DAGSchedulerEventProcessActor。从代码清单3-34可以看出,DAGScheduler-ActorSupervisor对于DAGSchedulerEventProcessActor采用了Akka的一对一监管策略。DAG-SchedulerActorSupervisor一旦生成DAGSchedulerEventProcessActor,并注册到ActorSystem,ActorSystem就会调用DAGSchedulerEventProcessActor的preStart,taskScheduler于是就持有了dagScheduler,见代码清单3-35。从代码清单3-35我们还看到DAG-SchedulerEventProcessActor所能处理的消息类型,比如JobSubmitted、BeginEvent、CompletionEvent等。DAGScheduler-EventProcessActor接受这些消息后会有不同的处理动作。在本章,读者只需要理解到这里即可,后面章节用到时会详细分析。

代码清单3-34 DAGSchedulerActorSupervisor的监管策略

private[scheduler] class DAGSchedulerActorSupervisor(dagScheduler: DAGScheduler)

    extends Actor with Logging {

 

    override val supervisorStrategy =

        OneForOneStrategy() {

            case x: Exception =>

                logError("eventProcesserActor failed; shutting down SparkContext", x)

                try {

                    dagScheduler.doCancelAllJobs()

                } catch {

                    case t: Throwable => logError("DAGScheduler failed to cancel all jobs.", t)

                }

                dagScheduler.sc.stop()

                Stop

    }

 

def receive = {

        case p: Props => sender ! context.actorOf(p)

        case _ => logWarning("received unknown message in DAGSchedulerActorSupervisor")

    }

}

代码清单3-35 DAGSchedulerEventProcessActor的实现

private[scheduler] class DAGSchedulerEventProcessActor(dagScheduler: DAGS-cheduler)

    extends Actor with Logging {

    override def preStart() {

        dagScheduler.taskScheduler.setDAGScheduler(dagScheduler)

    }

    /**

    * The main event loop of the DAG scheduler.

    */

    def receive = {

        case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>

            dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,

                listener, properties)

        case StageCancelled(stageId) =>

            dagScheduler.handleStageCancellation(stageId)

        case JobCancelled(jobId) =>

            dagScheduler.handleJobCancellation(jobId)

        case JobGroupCancelled(groupId) =>

            dagScheduler.handleJobGroupCancelled(groupId)

        case AllJobsCancelled =>

            dagScheduler.doCancelAllJobs()

        case ExecutorAdded(execId, host) =>

            dagScheduler.handleExecutorAdded(execId, host)

        case ExecutorLost(execId) =>

            dagScheduler.handleExecutorLost(execId, fetchFailed = false)

        case BeginEvent(task, taskInfo) =>

            dagScheduler.handleBeginEvent(task, taskInfo)

        case GettingResultEvent(taskInfo) =>

            dagScheduler.handleGetTaskResult(taskInfo)

        case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>

            dagScheduler.handleTaskCompletion(completion)

        case TaskSetFailed(taskSet, reason) =>

            dagScheduler.handleTaskSetFailed(taskSet, reason)

        case ResubmitFailedStages =>

            dagScheduler.resubmitFailedStages()

}

override def postStop() {

    // Cancel any active jobs in postStop hook

    dagScheduler.cleanUpAfterSchedulerStop()

}

上一篇:阿里云函数计算应用:将ActionTrail审计事件从OSS导入到SLS中


下一篇:linux内核内存管理中的pagevec结构体