AcWing 920. 最优乘车 BFS DIJKSTRA SPFA 方法

地址 https://www.acwing.com/problem/content/description/922/

H城是一个旅游胜地,每年都有成千上万的人前来观光。

为方便游客,
巴士公司在各个旅游景点及宾馆,饭店等地都设置了巴士站并开通了一些单程巴士线路。

每条单程巴士线路从某个巴士站出发,依次途经若干个巴士站,最终到达终点巴士站。

一名旅客最近到H城旅游,他很想去S公园游玩,
但如果从他所在的饭店没有一路巴士可以直接到达S公园,
则他可能要先乘某一路巴士坐几站,再下来换乘同一站台的另一路巴士, 
这样换乘几次后到达S公园。

现在用整数1,2,…N 给H城的所有的巴士站编号,
约定这名旅客所在饭店的巴士站编号为1,S公园巴士站的编号为N。

写一个程序,帮助这名旅客寻找一个最优乘车方案,
使他在从饭店乘车到S公园的过程中换乘的次数最少。

输入格式
第一行有两个数字M和N,表示开通了M条单程巴士线路,总共有N个车站。

从第二行到第M+1行依次给出了第1条到第M条巴士线路的信息,
其中第i+1行给出的是第i条巴士线路的信息,
从左至右按运行顺序依次给出了该线路上的所有站号,
相邻两个站号之间用一个空格隔开。

输出格式
共一行,如果无法乘巴士从饭店到达S公园,则输出”NO”,
否则输出最少换乘次数,换乘次数为0表示不需换车即可到达。

数据范围
1≤M≤100,
1≤N≤500
输入样例:
3 7
6 7
4 7 3 6
2 1 3 5
输出样例:
2

算法1
BFS
建图 每个车站到达后面的车站的距离都是1
那么1到达n的最短距离就是转车次数+1

比如例题中
1到2 3 5 都是距离1
2到 1 3 5 都是距离1
1先到3 3再到7 就是1到7的最短距离

C++ 代码

AcWing 920. 最优乘车 BFS DIJKSTRA SPFA 方法
#include <iostream>
#include <sstream>
#include <queue>

using namespace std;

const int N = 510;

int n, m;
int stop[N];
/*
3 7
6 7
4 7 3 6
2 1 3 5
输出样例:
2
*/
int g[N][N];


int bfs()
{
    queue<pair<int,int>> q;

    for (int i = 1; i <= n; i++) {
        if (g[1][i] != 0) {
            q.push({ i,0 });
            g[1][i] = 0;
        }
    }


    while (q.size()) {
        int currentStop = q.front().first;
        int step = q.front().second;
        q.pop();
        if (currentStop == n) return step;
        for (int i = 1; i <= n; i++) {
            if (g[currentStop][i] != 0) {
                q.push({ i ,step+1});
                g[currentStop][i] = 0;
            }
        }
    }


    return -1;
}

int main()
{
    cin >> m >> n;
    string line;
    getline(cin, line);
    while (m--) {
        getline(cin, line);
        stringstream ssin(line);
        int cnt = 0, p;
        while (ssin >> p) stop[cnt++] = p;

        //每个汽车的前站达到后站的距离都为1 因为是同一辆车 未换车
        for (int i = 0; i < cnt; i++) {
            for (int j = i + 1; j < cnt; j++) {
                g[stop[i]][stop[j]] = 1;
            }
        }
    }

    int ret = bfs();
    if(-1==ret) cout << "NO" <<endl;
    else cout << ret <<endl;

    return 0;
}


作者:itdef
链接:https://www.acwing.com/solution/content/15468/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
View Code

算法2
dijkstra

AcWing 920. 最优乘车 BFS DIJKSTRA SPFA 方法
#include <iostream>
#include <sstream>
#include <memory.h>
#include <queue>

using namespace std;

const int N = 510;

int n, m;
int stop[N];
/*
3 7
6 7
4 7 3 6
2 1 3 5
输出样例:
2
*/
int g[N][N];
int dist[N];
bool st[N];

int dij()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i++) {
        int t = -1;
        for (int j = 1; j <= n; j++) {
            if (!st[j] && (t == -1 || dist[t] > dist[j])) {
                t = j;
            }
        }

        for (int j = 1; j <= n; j++) {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }

        st[t] = true;
    }

    return dist[n];
}


int main()
{
    cin >> m >> n;
    memset(g, 0x3f, sizeof g);
    string line;
    getline(cin, line);
    while (m--) {
        getline(cin, line);
        stringstream ssin(line);
        int cnt = 0, p;
        while (ssin >> p) stop[cnt++] = p;

        //每个汽车的前站达到后站的距离都为1 因为是同一辆车 未换车
        for (int i = 0; i < cnt; i++) {
            for (int j = i + 1; j < cnt; j++) {
                g[stop[i]][stop[j]] = 1;
            }
        }
    }

    int ret = dij();


    if ( ret > 0x3f3f3f3f/2) cout << "NO" << endl;
    else cout << ret-1 << endl;

    return 0;
}


作者:itdef
链接:https://www.acwing.com/solution/content/15468/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
View Code

算法3
spfa

C++ 代码

AcWing 920. 最优乘车 BFS DIJKSTRA SPFA 方法
#include <iostream>
#include <sstream>
#include <queue>
#include <vector>
#include <memory.h>

using namespace std;

const int N = 510;

int n, m;
int stop[N];
/*
3 7
6 7
4 7 3 6
2 1 3 5
输出样例:
2
*/
vector<pair<int, int>> g[N];
int dist[N];
bool st[N];

int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size()) {
        int t = q.front();
        q.pop();
        st[t] = false;

        for (int i = 0; i < g[t].size(); i++) {
            int j = g[t][i].first;
            int w = g[t][i].second;
            if (dist[j] > dist[t] + w) {
                dist[j] = dist[t] + w;
                if (!st[j]) {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return dist[n];
}



int main()
{
    cin >> m >> n;

    string line;
    getline(cin, line);
    while (m--) {
        getline(cin, line);
        stringstream ssin(line);
        int cnt = 0, p;
        while (ssin >> p) stop[cnt++] = p;

        //每个汽车的前站达到后站的距离都为1 因为是同一辆车 未换车
        for (int i = 0; i < cnt; i++) {
            for (int j = i + 1; j < cnt; j++) {
                g[stop[i]].push_back({ stop[j],1 });
            }
        }
    }

    int ret = spfa();

    if (ret == 0x3f3f3f3f) cout << "NO" << endl;
    else cout << ret -1 << endl;


    return 0;
}

作者:itdef
链接:https://www.acwing.com/solution/content/15468/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
View Code

 

AcWing 920. 最优乘车 BFS DIJKSTRA SPFA 方法

上一篇:Delphi Treeview 用法(概念、属性、添加编辑插入节点、定位节点、拖拽等)


下一篇:一招教你如何在WPF界面开发时自定义外观,快来Get!