蓝桥杯真题-连号区间数

题目描述

小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入

第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

输出

输出一个整数,表示不同连号区间的数目。

样例输入

4
3 2 4 1

样例输出

7

代码如下:

#include <iostream>
using namespace std;
const int N = 10010, INF = 100000000;
int a[N], n;

int main() {
	cin >> n;
	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}
	int res = 0;
	for (int i = 0; i < n; i++) {
		int mins = INF, maxs = -INF;
		for (int j = i; j < n; j++) {
			mins = min(mins, a[j]);
			maxs = max(maxs, a[j]);
			if (maxs - mins == j - i) {
				res++;
			}
		}
	}
	cout << res << endl;


	return 0;
}
上一篇:数据挖掘-数据分类 python实现


下一篇:设计一个有getMin功能的栈