POJ-1003-hangover

Description

How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.


POJ-1003-hangover

Input

The input consists of one or more test cases, followed by a line containing the number 0.00 that signals the end of the input. Each test case is a single line containing a positive floating-point number c whose value is at least 0.01 and at most 5.20; c will contain exactly three digits.

Output

For each test case, output the minimum number of cards necessary to achieve an overhang of at least c card lengths. Use the exact output format shown in the examples.

Sample Input

1.00
3.71
0.04
5.19
0.00

Sample Output

3 card(s)
61 card(s)
1 card(s)
273 card(s)
题目大意:
给定卡的长度,如图放置,求至少放几张就会超过卡片的长度;

#include<iostream>

using namespace std;
int main()
{
    double len;

    while(cin>>len)
    { int sum=0;
    double s=0;
  if(len==0)break;
    for(int i=2;;i++)
    {
        s+=1.0/i;
        sum++;
        if(s>len)
        { break;
        }
    }
    cout<<sum<<" card(s)"<<endl;

    }




    return 0;
}

上一篇:第一次写博客,想了很久要给自己留一个什么样的开始


下一篇:poj-1006-Biorhythms