分布式实时分析数据库citus数据插入性能优化

前言

从可靠性和使用便利性来讲单机RDBMS完胜N多各类数据库,但当数据量到了一定量之后,又不得不寻求分布式,列存储等等解决方案。citus是基于PostgreSQL的分布式实时分析解决方案,由于其只是作为PostgreSQL的扩展插件而没有动PG内核,所有随快速随PG主版本升级,可靠性也非常值得信任。

citus在支持SQL特性上有一定的限制,比如不支持跨库事务,不支持部分join和子查询的写法等等,做选型时需要留意(大部分的分布式系统对SQL支持或多或少都有些限制,不足为奇,按场景选型即可)。

citus主要适合下面两种场景

  • 多租户
    每个租户的数据按租户ID分片,互不干扰,避免跨库操作。
  • 实时数据分析
    通过分片将数据打散到各个worker上,查询时由master生成分布式执行计划驱动所有worker并行工作。支持过滤,投影,聚合,join等各类常见算子的下推。

在实时数据分析场景,单位时间的数据增量会很大,本文实测一下citus的数据插入能力(更新,删除的性能类似)。

环境

软硬件配置

  • CentOS release 6.5 x64物理机(16C/128G/300GB SSD)
    • CPU: 2*8core 16核32线程, Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
  • PostgreSQL 9.6.2
  • citus 6.1.0
  • sysbench-1.0.3

机器列表

  • master

    • 192.168.0.177
  • worker(8个)

    • 192.168.0.181~192.168.0.188

软件的安装都比较简单,参考官方文档即可,这里略过。

postgresql.conf配置

listen_addresses = '*'
port = 5432
max_connections = 1100
shared_buffers = 32GB
effective_cache_size = 96GB
work_mem = 16MB
maintenance_work_mem = 2GB
min_wal_size = 4GB
max_wal_size = 32GB
checkpoint_completion_target = 0.9
wal_buffers = 16MB
default_statistics_target = 100
shared_preload_libraries = 'citus'
checkpoint_timeout = 60min
wal_level = replica
wal_compression = on
wal_level = replica
wal_log_hints = on
synchronous_commit = off 

测试场景

选用sysbench-1.0.3的oltp_insert.lua作为测试用例,执行的SQL的示例如下:

INSERT INTO sbtest1 (id, k, c, pad) VALUES (525449452, 5005, '28491622445-08162085385-16839726209-31171823540-28539137588-93842246002-13643098812-68836434394-95216556185-07917709646', '49165640733-86514010343-02300194630-37380434155-24438915047') 

但是,sysbench-1.0.3的oltp_insert.lua中有一个bug,需要先将其改正

i = sysbench.rand.unique() 

==>

i = sysbench.rand.unique() - 2147483648 

单机测试

建表

CREATE TABLE sbtest1
(
  id integer NOT NULL,
  k integer NOT NULL DEFAULT 0,
  c character(120) NOT NULL DEFAULT ''::bpchar,
  pad character(60) NOT NULL DEFAULT ''::bpchar,
  PRIMARY KEY (id)
);

CREATE INDEX k_1 ON sbtest1(k); 

插入数据

src/sysbench --test=src/lua/oltp_insert.lua \
--db-driver=pgsql \
--pgsql-host=127.0.0.1 \
--pgsql-port=5432 \
--pgsql-user=postgres  \
--pgsql-db=dbone  \
--auto_inc=0  \
--time=10 \
--threads=128  \
--report-interval=1 \
run 

测试结果

TPS为134030

-bash-4.1$ src/sysbench --test=src/lua/oltp_insert.lua --db-driver=pgsql --pgsql-host=127.0.0.1 --pgsql-port=5432 --pgsql-user=postgres  --pgsql-db=dbone  --auto_inc=0  --time=20 --threads=128  --report-interval=5 run
WARNING: the --test option is deprecated. You can pass a script name or path on the command line without any options.
sysbench 1.0.3 (using bundled LuaJIT 2.1.0-beta2)

Running the test with following options:
Number of threads: 128
Report intermediate results every 5 second(s)
Initializing random number generator from current time


Initializing worker threads...

Threads started!

[ 5s ] thds: 128 tps: 138381.74 qps: 138381.74 (r/w/o: 0.00/138381.74/0.00) lat (ms,95%): 2.07 err/s: 0.00 reconn/s: 0.00
[ 10s ] thds: 128 tps: 134268.30 qps: 134268.30 (r/w/o: 0.00/134268.30/0.00) lat (ms,95%): 2.07 err/s: 0.00 reconn/s: 0.00
[ 15s ] thds: 128 tps: 132830.91 qps: 132831.11 (r/w/o: 0.00/132831.11/0.00) lat (ms,95%): 2.07 err/s: 0.00 reconn/s: 0.00
[ 20s ] thds: 128 tps: 132073.81 qps: 132073.61 (r/w/o: 0.00/132073.61/0.00) lat (ms,95%): 2.03 err/s: 0.00 reconn/s: 0.00
SQL statistics:
    queries performed:
        read:                            0
        write:                           2688192
        other:                           0
        total:                           2688192
    transactions:                        2688192 (134030.18 per sec.)
    queries:                             2688192 (134030.18 per sec.)
    ignored errors:                      0      (0.00 per sec.)
    reconnects:                          0      (0.00 per sec.)

General statistics:
    total time:                          20.0547s
    total number of events:              2688192

Latency (ms):
         min:                                  0.10
         avg:                                  0.95
         max:                                 88.80
         95th percentile:                      2.07
         sum:                            2554006.85

Threads fairness:
    events (avg/stddev):           21001.5000/178.10
    execution time (avg/stddev):   19.9532/0.01 

资源消耗

此时CPU利用率90%,已经接近瓶颈。

-bash-4.1$ iostat sdc -xk 5
...
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          69.12    0.00   20.56    0.15    0.00   10.17

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util
sdc               0.00 25302.60   18.20  705.20    72.80 104019.20   287.79     5.96    8.21   0.81  58.48 

citus集群测试

建表

CREATE TABLE sbtest1
(
  id integer NOT NULL,
  k integer NOT NULL DEFAULT 0,
  c character(120) NOT NULL DEFAULT ''::bpchar,
  pad character(60) NOT NULL DEFAULT ''::bpchar,
  PRIMARY KEY (id)
);

CREATE INDEX k_1 ON sbtest1(k);

set citus.shard_count = 128;
set citus.shard_replication_factor = 1;
select create_distributed_table('sbtest1','id'); 

插入数据

/bak/soft/sysbench-1.0.3/src/sysbench --test=/bak/soft/sysbench-1.0.3/src/lua/oltp_insert.lua \
--db-driver=pgsql \
--pgsql-host=127.0.0.1 \
--pgsql-port=5432 \
--pgsql-user=postgres  \
--pgsql-db=dbcitus  \
--auto_inc=0  \
--time=10 \
--threads=64  \
--report-interval=1 \
run 

执行结果

TPS为44637,远低于单机。

-bash-4.1$ /bak/soft/sysbench-1.0.3/src/sysbench --test=/bak/soft/sysbench-1.0.3/src/lua/oltp_insert.lua --db-driver=pgsql --pgsql-host=127.0.0.1 --pgsql-port=5432 --pgsql-user=postgres  --pgsql-db=dbcitus  --auto_inc=0  --time=20 --threads=64  --report-interval=5 run
WARNING: the --test option is deprecated. You can pass a script name or path on the command line without any options.
sysbench 1.0.3 (using bundled LuaJIT 2.1.0-beta2)

Running the test with following options:
Number of threads: 64
Report intermediate results every 5 second(s)
Initializing random number generator from current time


Initializing worker threads...

Threads started!

[ 5s ] thds: 64 tps: 44628.01 qps: 44628.01 (r/w/o: 0.00/44628.01/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
[ 10s ] thds: 64 tps: 44780.80 qps: 44780.80 (r/w/o: 0.00/44780.80/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
[ 15s ] thds: 64 tps: 44701.32 qps: 44701.72 (r/w/o: 0.00/44701.72/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
[ 20s ] thds: 64 tps: 44801.41 qps: 44801.01 (r/w/o: 0.00/44801.01/0.00) lat (ms,95%): 2.48 err/s: 0.00 reconn/s: 0.00
SQL statistics:
    queries performed:
        read:                            0
        write:                           894715
        other:                           0
        total:                           894715
    transactions:                        894715 (44637.47 per sec.)
    queries:                             894715 (44637.47 per sec.)
    ignored errors:                      0      (0.00 per sec.)
    reconnects:                          0      (0.00 per sec.)

General statistics:
    total time:                          20.0421s
    total number of events:              894715

Latency (ms):
         min:                                  0.42
         avg:                                  1.43
         max:                                203.28
         95th percentile:                      2.48
         sum:                            1277233.99

Threads fairness:
    events (avg/stddev):           13979.9219/71.15
    execution time (avg/stddev):   19.9568/0.01 

资源消耗

性能瓶颈在master的CPU上,master生成执行计划消耗了大量CPU。

master

master的CPU利用率达到69%

[root@node1 ~]# iostat sdc -xk 5
Linux 2.6.32-431.el6.x86_64 (node1)     2017年03月13日     _x86_64_    (32 CPU)

...
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          50.61    0.00   17.80    0.00    0.00   31.59

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util
sdc               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00 

其中一个worker

worker的CPU利用率只有3%,IO也不高。

[root@node5 ~]# iostat sdc -xk 5
Linux 2.6.32-431.el6.x86_64 (node5)     2017年03月13日     _x86_64_    (32 CPU)

...
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           2.24    0.00    0.63    0.00    0.00   97.13

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util
sdc               0.00   774.00    0.00  265.80     0.00  4159.20    31.30     0.25    0.96   0.01   0.38 

优化:masterless部署

既然性能瓶颈在master上,那可以多搞几个master,甚至每个worker都作为master。 这并不困难,只要把master上的元数据拷贝到每个worker上,worker就可以当master用了。

拷贝元数据

在8个worker上分别执行以下SQL:

CREATE TABLE sbtest1
(
  id integer NOT NULL,
  k integer NOT NULL DEFAULT 0,
  c character(120) NOT NULL DEFAULT ''::bpchar,
  pad character(60) NOT NULL DEFAULT ''::bpchar,
  PRIMARY KEY (id)
);

CREATE INDEX k_1 ON sbtest1(k);

copy pg_dist_node from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_node to STDOUT"';

copy pg_dist_partition from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_partition to STDOUT"';

copy pg_dist_shard from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_shard to STDOUT"';

copy pg_dist_shard_placement from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_shard_placement to STDOUT"';

copy pg_dist_colocation from PROGRAM 'psql "host=192.168.0.177 port=5432 dbname=dbcitus user=postgres" -Atc "copy pg_dist_colocation to STDOUT"'; 

修改oltp_insert.lua

分别修改每个worker上的oltp_insert.lua中下面一行,使各个worker上产生的主键不容易冲突

i = sysbench.rand.unique() - 2147483648 

worker2

i = sysbench.rand.unique() - 2147483648 + 1 

worker3

i = sysbench.rand.unique() - 2147483648 + 2 

...

worker8

i = sysbench.rand.unique() - 2147483648 + 7 

准备测试脚本

在每个worker上准备测试脚本

/tmp/run_oltp_insert.sh:

#!/bin/bash

cd /bak/soft/sysbench-1.0.3
/bak/soft/sysbench-1.0.3/src/sysbench /bak/soft/sysbench-1.0.3/src/lua/oltp_insert.lua \
--db-driver=pgsql \
--pgsql-host=127.0.0.1 \
--pgsql-port=5432 \
--pgsql-user=postgres  \
--pgsql-db=dbcitus  \
--auto_inc=0  \
--time=60 \
--threads=64  \
--report-interval=5 \
run >/tmp/run_oltp_insert.log 2>&1 

测试

在每个worker上同时执行insert测试

[root@node1 ~]# for i in `seq 1 8` ; do ssh 192.168.0.18$i /tmp/run_oltp_insert.sh >/dev/null 2>&1 &  done
[10] 27332
[11] 27333
[12] 27334
[13] 27335
[14] 27336
[15] 27337
[16] 27338
[17] 27339 

测试结果

在其中一个worker上的执行结果如下,QPS 2.5w

-bash-4.1$ cat /tmp/run_oltp_insert.log
sysbench 1.0.3 (using bundled LuaJIT 2.1.0-beta2)

Running the test with following options:
Number of threads: 64
Report intermediate results every 5 second(s)
Initializing random number generator from current time


Initializing worker threads...

Threads started!

[ 5s ] thds: 64 tps: 25662.78 qps: 25662.78 (r/w/o: 0.00/25662.78/0.00) lat (ms,95%): 6.67 err/s: 2.60 reconn/s: 0.00
[ 10s ] thds: 64 tps: 26225.38 qps: 26225.38 (r/w/o: 0.00/26225.38/0.00) lat (ms,95%): 6.67 err/s: 7.00 reconn/s: 0.00
[ 15s ] thds: 64 tps: 25996.42 qps: 25996.42 (r/w/o: 0.00/25996.42/0.00) lat (ms,95%): 6.79 err/s: 11.40 reconn/s: 0.00
[ 20s ] thds: 64 tps: 25670.36 qps: 25670.36 (r/w/o: 0.00/25670.36/0.00) lat (ms,95%): 6.79 err/s: 18.60 reconn/s: 0.00
[ 25s ] thds: 64 tps: 25620.89 qps: 25620.89 (r/w/o: 0.00/25620.89/0.00) lat (ms,95%): 6.79 err/s: 22.60 reconn/s: 0.00
[ 30s ] thds: 64 tps: 25357.39 qps: 25357.39 (r/w/o: 0.00/25357.39/0.00) lat (ms,95%): 6.91 err/s: 33.40 reconn/s: 0.00
[ 35s ] thds: 64 tps: 25247.67 qps: 25247.67 (r/w/o: 0.00/25247.67/0.00) lat (ms,95%): 6.91 err/s: 34.60 reconn/s: 0.00
[ 40s ] thds: 64 tps: 25069.27 qps: 25069.27 (r/w/o: 0.00/25069.27/0.00) lat (ms,95%): 6.91 err/s: 41.00 reconn/s: 0.00
[ 45s ] thds: 64 tps: 24796.27 qps: 24796.27 (r/w/o: 0.00/24796.27/0.00) lat (ms,95%): 7.04 err/s: 49.40 reconn/s: 0.00
[ 50s ] thds: 64 tps: 24801.00 qps: 24801.00 (r/w/o: 0.00/24801.00/0.00) lat (ms,95%): 7.04 err/s: 47.40 reconn/s: 0.00
[ 55s ] thds: 64 tps: 24752.83 qps: 24752.83 (r/w/o: 0.00/24752.83/0.00) lat (ms,95%): 7.04 err/s: 57.20 reconn/s: 0.00
[ 60s ] thds: 64 tps: 24533.35 qps: 24533.35 (r/w/o: 0.00/24533.35/0.00) lat (ms,95%): 7.17 err/s: 63.60 reconn/s: 0.00
SQL statistics:
    queries performed:
        read:                            0
        write:                           1518786
        other:                           0
        total:                           1518786
    transactions:                        1518786 (25277.24 per sec.)
    queries:                             1518786 (25277.24 per sec.)
    ignored errors:                      1944   (32.35 per sec.)
    reconnects:                          0      (0.00 per sec.)

General statistics:
    total time:                          60.0829s
    total number of events:              1518786

Latency (ms):
         min:                                  0.47
         avg:                                  2.53
         max:                               1015.04
         95th percentile:                      6.91
         sum:                            3835098.18

Threads fairness:
    events (avg/stddev):           23731.0312/213.31
    execution time (avg/stddev):   59.9234/0.02 

系统负载

CPU消耗了66%

-bash-4.1$ iostat sdc -xk 5
Linux 2.6.32-431.el6.x86_64 (node5)     2017年03月13日     _x86_64_    (32 CPU)


avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          47.09    0.00   18.35    0.47    0.00   34.10

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util
sdc               0.00  4195.60    0.00 19787.60     0.00 95932.80     9.70     0.98    0.05   0.02  42.54 

汇总结果

8台worker的总qps为214362

[root@node1 ~]# for i in `seq 1 8` ; do ssh 192.168.0.18$i grep queries: /tmp/run_oltp_insert.log ; done
    queries:                             1518786 (25277.24 per sec.)
    queries:                             1587323 (26412.68 per sec.)
    queries:                             1700562 (28305.06 per sec.)
    queries:                             1631516 (27151.82 per sec.)
    queries:                             1615778 (26885.48 per sec.)
    queries:                             1649236 (27449.03 per sec.)
    queries:                             1621940 (26993.20 per sec.)
    queries:                             1554917 (25890.71 per sec.) 

数据查询

在master上查询插入的记录数。

dbcitus=# select count(1) from sbtest1;
  count   
----------
 12880058
(1 行记录)

时间:73.197 ms 

查询是在128个分片上并行执行的,所以速度很快。

总结

  1. citus的执行计划生成影响了数据插入的速度,通过Masterless部署可提升到20w/s以上。
  2. 进一步提升插入性能可以从citus源码入手,根据分片列值做快速SQL分发,避免在master上解析SQL,之前在另一个场景上做过原型,性能可提升10倍以上。
  3. 极致的做法是绕过master直接插入数据到worker上的分片表,还可以利用copy或批更新。

参考

  • Scaling Out Data Ingestion

    • Real-time Inserts:0-50k/s
    • Real-time Updates:0-50k/s
    • Bulk Copy:100-200k/s
    • Masterless Citus:50k/s-500k/s
上一篇:阿里云建站方法汇总(云服务器建站+速成美站+定制建站)


下一篇:DBCC CHECKDB 数据库或表修复