文章目录
P1 机器学习介绍
-
AI:Artificial Intelligence
-
机器学习:让机器具有学习的能力
-
人工智慧:达成的目标,机器学习是手段
-
深度学习:是机器学习的其中一个方法
-
Machine Learning = Looking for a Function From Data
- 语音辨识(Speech Recognition
- 影像辨识(Image Recognition
- Playing Go
- Dialogue System
- 我理解的机器学习:从数据中找到一个函数,对于未学习过的事物进行判定
找出Function
Framework
Function Set – Model
- 要准备一个function set – Model
Training Data
- function input:
- function output:
从Function中pick出一个best Function
- best Function–f stat
- 对于不在Training Data中的cat通过f start输出为cat
Test && Training
Framework Step
Step1:
- define a set of function:找出一个function set
Step2:
- goodness of function:衡量一个function的好坏
Step3:
- pick the best function:有一个好的方法,一个自动的演算法挑出好的function
Learining Map
Regression–回归
- The output of the target function f is ‘scalar’
- For example:predict PM2.5
- 预测PM2.5利用今天上午PM2.5,昨天上午PM2.5,预测明天上午PM2.5
- 通过Training Data
Classification–分类
- 与Regression的不同输出的结果类型不同
Binary Classification–二元分类
- Output:Yes or No
Multi-class Classification
- Output:Class 1,Class 2,…Class N
-
Example
- Binary Classification : **Spam filtering:**判断邮件是否为垃圾邮件,只需要给Training Data
-
Example
- Multi-Class Classification:Document Classification
Model分类
- Linear Model
-
Non-linear Model
- Deep Learning:complex function
- Playing Go:看成19*19个选项的选择题,通过Training Data进行选择
Supervised Learning
- Training Data:Input / output pair of target function
- Function output = label
- 机器学习需要大量的label,就是要对结果进行人工标记
- Hard to collect a large amount of labelled data
Semi-supervised Learning
- 可以减少data用量
- Unlabeled data:也可能对学习有帮助
Transfer Learning
Unsupervised Learning
- 无师自通
- 机器如何自己学会
Structured Learning - Beyond Classification
Reinforcement Leaning
-
Supervised v.s. Reinforcement
-
Supervised:
- Learning from teacher
- 告诉了机器正确的答案是什么
-
Reinfocement:
- Learning from critics
- 没有告诉机器正确的答案是是什么
- 需要比较强的intelligence
-
- Reinforcement的步骤:对手是另外一个机器
- 没有办法做Supervised Learning 才去做Reinforcement Learning
P2 为什么要学习机器学习
- AI训练师要为机器选择合适的Model和loss function适合解决不同的问题、
Summary
- discriminate different scenario including Supervised Learning、Semi-supervised Learning、Transfer Learning、Unsupervised Learning、Reinforcement Learning
- discriminate different Task including Regression 、Classification and Structured Learning
- use different method including Linear Model 、 Deep Learning 、 SVM、decision tree、K-NN
-
discriminate Regression and Classification
- Regression:Output是scalar
-
Classification: including Binary Classification and Multi-class Classification
- Binary Classification:Yes or No
- Multi-class Classification:Class 1,Class 2 ,Class N and so on like a selection