一起重新开始学大数据-hive篇-day 52 常用函数、复杂函数、行列互转、UDF自定义函数、HiveShell |
Hive 常用函数
关系运算
-
等值比较
=
==
<=>
-
不等值比较
!=
<>
<=>与=和==是等于的意思,<> 与!=都是不等于的意思,但是一般都是用<>来代表不等于,因为<>在任何SQL中都起作用,但是!=在sql2000中用到,则是语法错误,不兼容的(同理=和<=>也是)
-
区间比较: select * from default.students where id
between
1500100001 and 1500100010; -
空值/非空值判断:
is null、is not null、nvl()、isnull()
-
like、rlike、regexp
用法
A
RLIKE
B ,表示B是否在A里面即可。而ALIKE
B,则表示B是否是A.regexp
的用法和rlike
一样
数值计算
-
取整函数(四舍五入):
round
-
向上取整:
ceil
-
向下取整:
floor
条件函数
- if: if(表达式,如果表达式成立的返回值,如果表达式不成立的返回值)
select if(1>0,1,0);
select if(1>0,if(-1>0,-1,1),0);
- COALESCE
select COALESCE(null,'1','2'); // 1 从左往右 一次匹配 直到非空为止
select COALESCE('1',null,'2'); // 1
- case when
select score
,case when score>120 then '优秀'
when score>100 then '良好'
when score>90 then '及格'
else '不及格'
end as pingfen
from score limit 20;
select name
,case name when "施笑槐" then "槐ge"
when "吕金鹏" then "鹏ge"
when "单乐蕊" then "蕊jie"
else "算了不叫了"
end as nickname
from students limit 10;
注意
条件的顺序
日期函数
select from_unixtime(1610611142,'YYYY/MM/dd HH:mm:ss');
select from_unixtime(unix_timestamp(),'YYYY/MM/dd HH:mm:ss');
// '2021年09月8日' -> '2021-09-8'
select from_unixtime(unix_timestamp('2021年09月8日','yyyy年MM月dd日'),'yyyy-MM-dd');
// "09大帅2021宇宙第一8逼" -> "2021/09/8"
select from_unixtime(unix_timestamp("09大帅2021宇宙第一8逼","MM大帅yyyy宇宙第一dd逼"),"yyyy/MM/dd");
字符串函数
concat 拼接
concat('123','456'); // 123456
concat('123','456',null); // NULL
concat_ws 分隔符拼接
select concat_ws('#','a','b','c'); // a#b#c
select concat_ws('#','a','b','c',NULL); // a#b#c 可以指定分隔符,并且会自动忽略NULL
select concat_ws("|",cast(id as string),name,cast(age as string),gender,clazz) from students limit 10;
substring 取对应位置开始相应数量的字符串
select substring("abcdefg",1); // abcdefg HQL中涉及到位置的时候 是从1开始计数
// '2021/09/08' -> '2021-09-08'
select concat_ws("-",substring('2021/09/08',1,4),substring('2021/09/08',6,2),substring('2021/09/08',9,2));
split 切分
select split("abcde,fgh",","); // ["abcde","fgh"]
select split("a,b,c,d,e,f",",")[2]; // c
select explode(split("abcde,fgh",",")); // abcde
// fgh
get_json_object解析json格式数据
// 解析json格式的数据
select get_json_object('{"name":"zhangsan","age":18,"score":[{"course_name":"math","score":100},{"course_name":"english","score":60}]}',"$.score[0].score"); // 100
Hive 中的wordCount
- 建表(使用数据中不存在的分隔符就是让数据放在同一行,然后通过查询语句切分处理)
create table words(
words string
)row format delimited fields terminated by '|';
- 数据:(vim /usr/local/soft/data/words_data.txt)
hello,java,hello,java,scala,python
hbase,hadoop,hadoop,hdfs,hive,hive
hbase,hadoop,hadoop,hdfs,hive,hive
- 读取数据
load data local inpath "/usr/local/soft/data/words_data.txt" into table words;
- 查询语句:
select word,count(*) from (select explode(split(words,',')) word from words) a group by a.word;
- 结果
Hive 开窗函数
- 好像给每一份数据 开一扇窗户 所以叫开窗函数
- 在sql中有一类函数叫做
聚合函数
,例如sum()、avg()、max()
等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后 的行数是要少于聚集前的行数的.但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数.
测试数据
vim /usr/local/soft/data/new_score_data.txt;
111,69,class1,department1
112,80,class1,department1
113,74,class1,department1
114,94,class1,department1
115,93,class1,department1
121,74,class2,department1
122,86,class2,department1
123,78,class2,department1
124,70,class2,department1
211,93,class1,department2
212,83,class1,department2
213,94,class1,department2
214,94,class1,department2
215,82,class1,department2
216,74,class1,department2
221,99,class2,department2
222,78,class2,department2
223,74,class2,department2
224,80,class2,department2
225,85,class2,department2
建表语句
create table new_score(
id int
,score int
,clazz string
,department string
) row format delimited fields terminated by ",";
插入数据:
load data local inpath "/usr/local/soft/data/new_score_data.txt" into table new_score;
row_number:无并列排名
- 用法:
select xxxx, row_number() over(partition by 分组字段 order by 排序字段 desc) as rn from tb group by xxxx
Over
子句之后第一个提到的就是Partition By
.Partition By
子句也可以称为查询分区子句,非常类似于Group By,都是将数据按照边界值分组,而Over之前的函数在每一个分组之内进行,如果超出了分组,则函数会重新计算.
dense_rank:有并列排名,并且依次递增
rank:有并列排名,不依次递增
PERCENT_RANK:(rank的结果-1)/(分区内数据的个数-1)
select id
,score
,clazz
,department
,row_number() over (partition by clazz order by score desc) as row_number_rk
,dense_rank() over (partition by clazz order by score desc) as dense_rk
,rank() over (partition by clazz order by score desc) as rk
,percent_rank() over (partition by clazz order by score desc) as percent_rk
from new_score;
结果:
id score clazz department row_number_rk dense_rk rk percent_rk
114 94 class1 department1 1 1 1 0.0
214 94 class1 department2 2 1 1 0.0
213 94 class1 department2 3 1 1 0.0
211 93 class1 department2 4 2 4 0.3
115 93 class1 department1 5 2 4 0.3
212 83 class1 department2 6 3 6 0.5
215 82 class1 department2 7 4 7 0.6
112 80 class1 department1 8 5 8 0.7
113 74 class1 department1 9 6 9 0.8
216 74 class1 department2 10 6 9 0.8
111 69 class1 department1 11 7 11 1.0
221 99 class2 department2 1 1 1 0.0
122 86 class2 department1 2 2 2 0.125
225 85 class2 department2 3 3 3 0.25
224 80 class2 department2 4 4 4 0.375
123 78 class2 department1 5 5 5 0.5
222 78 class2 department2 6 5 5 0.5
121 74 class2 department1 7 6 7 0.75
223 74 class2 department2 8 6 7 0.75
124 70 class2 department1 9 7 9 1.0
LAG(col,n):往前第n行数据
LEAD(col,n):往后第n行数据
FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
LAST_VALUE:取分组内排序后,截止到当前行,最后一个值,对于并列的排名,取最后一个
NTILE(n):对分区内数据再分成n组,然后打上组号
select id
,score
,clazz
,department
,lag(id,2) over (partition by clazz order by score desc) as lag_num
,LEAD(id,2) over (partition by clazz order by score desc) as lead_num
,FIRST_VALUE(id) over (partition by clazz order by score desc) as first_v_num
,LAST_VALUE(id) over (partition by clazz order by score desc) as last_v_num
,NTILE(3) over (partition by clazz order by score desc) as ntile_num
from new_score;
id score clazz department lag_num lead_num first_v_num last_v_num ntile_num
114 94 class1 department1 NULL 213 114 213 1
214 94 class1 department2 NULL 211 114 213 1
213 94 class1 department2 114 115 114 213 1
211 93 class1 department2 214 212 114 115 1
115 93 class1 department1 213 215 114 115 2
212 83 class1 department2 211 112 114 212 2
215 82 class1 department2 115 113 114 215 2
112 80 class1 department1 212 216 114 112 2
113 74 class1 department1 215 111 114 216 3
216 74 class1 department2 112 NULL 114 216 3
111 69 class1 department1 113 NULL 114 111 3
221 99 class2 department2 NULL 225 221 221 1
122 86 class2 department1 NULL 224 221 122 1
225 85 class2 department2 221 123 221 225 1
224 80 class2 department2 122 222 221 224 2
123 78 class2 department1 225 121 221 222 2
222 78 class2 department2 224 223 221 222 2
121 74 class2 department1 123 124 221 223 3
223 74 class2 department2 222 NULL 221 223 3
124 70 class2 department1 121 NULL 221 124 3
Hive 行转列
lateral view explode
create table testArray2(
food string,
dish_name array<string>
)row format delimited
fields terminated by '#'
COLLECTION ITEMS terminated by ',';
数据:
鱼#红烧鱼,清蒸鱼,水煮鱼
鸡#白斩鸡,香酥鸡,黄焖鸡
select food,col1 from testarray2 lateral view explode(dish_name) t1 as col1;
结果:
鱼 红烧鱼
鱼 清蒸鱼
鱼 水煮鱼
鸡 白斩鸡
鸡 香酥鸡
鸡 黄焖鸡
select key from (select explode(map('key1',1,'key2',2,'key3',3)) as (key,value)) t;
结果:
key1
key2
key3
select food,col1,col2 from testarray2 lateral view explode(map('key1',1,'key2',2,'key3',3)) t1 as col1,col2;
结果:
鱼 key1 1
鱼 key2 2
鱼 key3 3
鸡 key1 1
鸡 key2 2
鸡 key3 3
select food,pos,col1 from testarray2 lateral view posexplode(dish_name) t1 as pos,col1;
结果:
鱼 0 红烧鱼
鱼 1 清蒸鱼
鱼 2 水煮鱼
鸡 0 白斩鸡
鸡 1 香酥鸡
鸡 2 黄焖鸡
Hive 列转行
// testLieToLine
food | dish_name |
---|---|
鱼 | 红烧鱼 |
鱼 | 清蒸鱼 |
鱼 | 水煮鱼 |
鸡 | 白斩鸡 |
鸡 | 香酥鸡 |
鸡 | 黄焖鸡 |
create table testLieToLine(
food string,
dish_name string
)row format delimited
fields terminated by '#';
select food,collect_list(dish_name) from testLieToLine group by food;
// 结果
鸡 ["白斩鸡","香酥鸡","黄焖鸡"]
鱼 ["红烧鱼","清蒸鱼","水煮鱼"]
select t1.food
,collect_list(t1.col1)
from (
select food
,dish_name
from testarray2
lateral view explode(dish_name) t1 as col1
) t1 group by t1.food;
Hive自定义函数UserDefineFunction
UDF:一进一出
- 创建maven项目,并加入依赖
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency>
- 编写代码,继承
org.apache.hadoop.hive.ql.exec.UDF
,实现evaluate方法,在evaluate方法中实现自己的逻辑
import org.apache.hadoop.hive.ql.exec.UDF;
public class HiveUDF extends UDF {
// hadoop => #hadoop#
public String evaluate(String col1) {
// 给传进来的数据 左边加上 # 号 右边加上 $
String result = "#" + col1 + "$";
return result;
}
}
- 打成jar包并上传至Linux虚拟机
- 在hive shell中,使用
add jar 路径
将jar包作为资源添加到hive环境中
add jar /usr/local/soft/jars/HiveUDF2-1.0.jar;
- 使用jar包资源注册一个临时函数,fxxx1是你的函数名
create temporary function fxxx1 as 'MyUDF';
- 使用函数名处理数据
select fxx1(name) as fxx_name from students limit 10;
#施笑槐$
#吕金鹏$
#单乐蕊$
#葛德曜$
#宣谷芹$
#边昂雄$
#尚孤风$
#符半双$
#沈德昌$
#羿彦昌$
UDTF:一进多出
“key1:value1,key2:value2,key3:value3”
key1 value1
key2 value2
key3 value3
方法一:使用 explode+split
select split(t.col1,":")[0],split(t.col1,":")[1]
from (select explode(split("key1:value1,key2:value2,key3:value3",",")) as col1) t;
方法二:自定UDTF
- 代码
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import java.util.ArrayList;
public class HiveUDTF extends GenericUDTF {
// 指定输出的列名 及 类型
@Override
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
ArrayList<String> filedNames = new ArrayList<String>();
ArrayList<ObjectInspector> filedObj = new ArrayList<ObjectInspector>();
filedNames.add("col1");
filedObj.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
filedNames.add("col2");
filedObj.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(filedNames, filedObj);
}
// 处理逻辑 my_udtf(col1,col2,col3)
// "key1:value1,key2:value2,key3:value3"
// my_udtf("key1:value1,key2:value2,key3:value3")
public void process(Object[] objects) throws HiveException {
// objects 表示传入的N列
String col = objects[0].toString();
// key1:value1 key2:value2 key3:value3
String[] splits = col.split(",");
for (String str : splits) {
String[] cols = str.split(":");
// 将数据输出
forward(cols);
}
}
// 在UDTF结束时调用
public void close() throws HiveException {
}
}
- SQL
select my_udtf("key1:value1,key2:value2,key3:value3");
字段:id,col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11,col12 共13列
数据:
id col1 col2 col3 col4 col5 col6 col7 col8 col9 col10 col11 col12 a 1 2 3 4 5 6 7 8 9 10 11 12 b 11 12 13 14 15 16 17 18 19 20 21 22 c 21 22 23 24 25 26 27 28 29 30 31 32
转成3列:
id,hours,value
例如:
a,1,2,3,4,5,6,7,8,9,10,11,12a,0时,1
a,2时,2
a,4时,3
a,6时,4
…
create table udtfData(
id string
,col1 string
,col2 string
,col3 string
,col4 string
,col5 string
,col6 string
,col7 string
,col8 string
,col9 string
,col10 string
,col11 string
,col12 string
)row format delimited fields terminated by ',';
代码:
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import java.util.ArrayList;
public class HiveUDTF2 extends GenericUDTF {
@Override
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
ArrayList<String> filedNames = new ArrayList<String>();
ArrayList<ObjectInspector> fieldObj = new ArrayList<ObjectInspector>();
filedNames.add("col1");
fieldObj.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
filedNames.add("col2");
fieldObj.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(filedNames, fieldObj);
}
public void process(Object[] objects) throws HiveException {
int hours = 0;
for (Object obj : objects) {
hours = hours + 1;
String col = obj.toString();
ArrayList<String> cols = new ArrayList<String>();
cols.add(hours + "时");
cols.add(col);
forward(cols);
}
}
public void close() throws HiveException {
}
}
添加jar资源:
add jar /usr/local/soft/HiveUDF2-1.0.jar;
注册udtf函数:
create temporary function my_udtf as 'MyUDTF';
SQL:
select id,hours,value from udtfData lateral view my_udtf(col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11,col12) t as hours,value ;
UDAF:多进一出
UDAF(User Defined Aggregate Function),即用户定义的聚合函数,聚合函数和普通函数的区别是什么呢,普通函数是接受一行输入产生一个输出,聚合函数是接受一组(一般是多行)输入然后产生一个输出,即将一组的值想办法聚合一下。(多对一)
太过复杂也不经常用到需了解请查看: