前言
在上一篇文章中,给大家介绍和剖析了HPA的实现原理以及演进的思路与历程。在本文中,我们会为大家讲解如何使用HPA以及一些需要注意的细节。
autoscaling/v1
实践
v1的模板可能是大家平时见到最多的也是最简单的,v1版本的HPA只支持一种指标 —— CPU。传统意义上,弹性伸缩最少也会支持CPU与Memory两种指标,为什么在Kubernetes中只放开了CPU呢?其实最早的HPA是计划同时支持这两种指标的,但是实际的开发测试中发现,内存不是一个非常好的弹性伸缩判断条件。因为和CPU不同,很多内存型的应用,并不会因为HPA弹出新的容器而带来内存的快速回收,因为很多应用的内存都要交给语言层面的VM进行管理,也就是内存的回收是由VM的GC来决定的。这就有可能因为GC时间的差异导致HPA在不恰当的时间点震荡,因此在v1的版本中,HPA就只支持了CPU一种指标。
一个标准的v1模板大致如下:
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: php-apache
namespace: default
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: php-apache
minReplicas: 1
maxReplicas: 10
targetCPUUtilizationPercentage: 50
其中scaleTargetRef
表示当前要操作的伸缩对象是谁,在本例中,伸缩的对象是一个apps/v1
版本的Deployment
。targetCPUUtilizationPercentage
表示当整体的资源利用率超过50%的时候,会进行扩容。接下来我们做一个简单的Demo来实践下。
-
登录容器服务控制台,首先创建一个应用部署,选择使用模板创建,模板内容如下。
apiVersion: apps/v1beta1 kind: Deployment metadata: name: php-apache labels: app: php-apache spec: replicas: 1 selector: matchLabels: app: php-apache template: metadata: labels: app: php-apache spec: containers: - name: php-apache image: registry.cn-hangzhou.aliyuncs.com/ringtail/hpa-example:v1.0 ports: - containerPort: 80 resources: requests: memory: "300Mi" cpu: "250m" --- apiVersion: v1 kind: Service metadata: name: php-apache labels: app: php-apache spec: selector: app: php-apache ports: - protocol: TCP name: http port: 80 targetPort: 80 type: ClusterIP
-
部署压测模组HPA模板
apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: name: php-apache namespace: default spec: scaleTargetRef: apiVersion: apps/v1beta1 kind: Deployment name: php-apache minReplicas: 1 maxReplicas: 10 targetCPUUtilizationPercentage: 50
- 开启压力测试
apiVersion: apps/v1beta1
kind: Deployment
metadata:
name: load-generator
labels:
app: load-generator
spec:
replicas: 1
selector:
matchLabels:
app: load-generator
template:
metadata:
labels:
app: load-generator
spec:
containers:
- name: load-generator
image: busybox
command:
- "sh"
- "-c"
- "while true; do wget -q -O- http://php-apache.default.svc.cluster.local; done"
- 检查扩容状态
- 关闭压测应用
- 检查缩容状态
这样一个使用autoscaling/v1
的HPA就完成了,相比而言,这个版本的HPA是目前最简单的,无论是否升级Metrics-Server
都可以实现。
autoscaling/v2beta1
实践
在前面的内容中为大家讲解了HPA还有autoscaling/v2beta1
和autoscaling/v2beta2
这两个版本,这两个版本的区别是autoscaling/v1beta1
支持了Resource Metrics
和Custom Metrics
。而在autoscaling/v2beta2
的版本中额外增加了External Metrics
的支持。对于External Metrics
在本文中就不过多赘述,因为External Metrics
目前在社区里面没有太多成熟的实现,比较成熟的实现是Prometheus Custom Metrics
。
上面这张图为大家展现了开启Metrics Server
后HPA是如何使用不同的类型的Metrics
的,如果需要使用Custom Metrics
则需要配置安装相应的Custom Metrics Adapter
,在本篇文章中,主要为大家介绍一个基于QPS
来进行弹性伸缩的例子。
- 安装
Metrics Server
并在kube-controller-manager
中进行开启
目前默认的阿里云容器服务Kubernetes集群使用还是Heapster
,容器服务计划在1.12中更新Metrics Server
,这个地方需要特别说明下,社区虽然已经逐渐开始废弃Heapster
,但是目前社区中还有大量的组件是在强依赖Heapster
的API,因此阿里云基于Metrics Server
进行了Heapster
完整的兼容,既可以让开发者使用Metrics Server
的新功能,又可以无需担心其他组件的宕机。
在部署新的Metrics Server
之前,我们首先要备份一下Heapster
中的一些启动参数,因为这些参数稍后会直接用在Metrics Server
的模板中,其中重点关心的是两个Sink,如果需要使用Influxdb的开发者,可以保留第一个Sink,如果需要保留云监控集成能力的开发者,则保留第二个Sink。
将这两个参数拷贝到Metrics Server
的启动模板中,在本例中是两个都兼容,并下发部署。
apiVersion: v1
kind: ServiceAccount
metadata:
name: metrics-server
namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
name: metrics-server
namespace: kube-system
labels:
kubernetes.io/name: "Metrics-server"
spec:
selector:
k8s-app: metrics-server
ports:
- port: 443
protocol: TCP
targetPort: 443
---
apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
name: v1beta1.metrics.k8s.io
spec:
service:
name: metrics-server
namespace: kube-system
group: metrics.k8s.io
version: v1beta1
insecureSkipTLSVerify: true
groupPriorityMinimum: 100
versionPriority: 100
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: metrics-server
namespace: kube-system
labels:
k8s-app: metrics-server
spec:
selector:
matchLabels:
k8s-app: metrics-server
template:
metadata:
name: metrics-server
labels:
k8s-app: metrics-server
spec:
serviceAccountName: admin
containers:
- name: metrics-server
image: registry.cn-hangzhou.aliyuncs.com/ringtail/metrics-server:1.1
imagePullPolicy: Always
command:
- /metrics-server
- '--source=kubernetes:https://kubernetes.default'
- '--sink=influxdb:http://monitoring-influxdb:8086'
- '--sink=socket:tcp://monitor.csk.[region_id].aliyuncs.com:8093?clusterId=[cluster_id]&public=true'
接下来我们修改下Heapster
的Service
,将服务的后端从Heapster
转移到Metrics Server
。
如果此时从控制台的节点页面可以获取到右侧的监控信息的话,说明Metrics Server
以及完全兼容Heapster
。
此时通过kubectl get apiservice
,如果可以看到注册的v1beta1.metrics.k8s.io
的api,则说明已经注册成功。
接下来我们需要在kube-controller-manager
上切换Metrics
的数据来源。kube-controller-manger
部署在每个master上,是通过Static Pod
的托管给kubelet的。因此只需要修改kube-controller-manager
的配置文件,kubelet就会自动进行更新。kube-controller-manager
在主机上的路径是/etc/kubernetes/manifests/kube-controller-manager.yaml
。
需要将--horizontal-pod-autoscaler-use-rest-clients=true
,这里有一个注意点,因为如果使用vim进行编辑,vim会自动生成一个缓存文件影响最终的结果,所以比较建议的方式是将这个配置文件移动到其他的目录下进行修改,然后再移回原来的目录。至此,Metrics Server
已经可以为HPA进行服务了,接下来我们来做自定义指标的部分。
- 部署
Custom Metrics Adapter
如集群中未部署Prometheus,可以参考《阿里云容器Kubernetes监控(七) - Prometheus监控方案部署》先部署Prometheus。接下来我们部署Custom Metrics Adapter
。
kind: Namespace
apiVersion: v1
metadata:
name: custom-metrics
---
kind: ServiceAccount
apiVersion: v1
metadata:
name: custom-metrics-apiserver
namespace: custom-metrics
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: custom-metrics:system:auth-delegator
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:auth-delegator
subjects:
- kind: ServiceAccount
name: custom-metrics-apiserver
namespace: custom-metrics
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: custom-metrics-auth-reader
namespace: kube-system
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
name: custom-metrics-apiserver
namespace: custom-metrics
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: custom-metrics-resource-reader
rules:
- apiGroups:
- ""
resources:
- namespaces
- pods
- services
verbs:
- get
- list
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: custom-metrics-apiserver-resource-reader
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: custom-metrics-resource-reader
subjects:
- kind: ServiceAccount
name: custom-metrics-apiserver
namespace: custom-metrics
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: custom-metrics-getter
rules:
- apiGroups:
- custom.metrics.k8s.io
resources:
- "*"
verbs:
- "*"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: hpa-custom-metrics-getter
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: custom-metrics-getter
subjects:
- kind: ServiceAccount
name: horizontal-pod-autoscaler
namespace: kube-system
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: custom-metrics-apiserver
namespace: custom-metrics
labels:
app: custom-metrics-apiserver
spec:
replicas: 1
selector:
matchLabels:
app: custom-metrics-apiserver
template:
metadata:
labels:
app: custom-metrics-apiserver
spec:
tolerations:
- key: beta.kubernetes.io/arch
value: arm
effect: NoSchedule
- key: beta.kubernetes.io/arch
value: arm64
effect: NoSchedule
serviceAccountName: custom-metrics-apiserver
containers:
- name: custom-metrics-server
image: luxas/k8s-prometheus-adapter:v0.2.0-beta.0
args:
- --prometheus-url=http://prometheus-k8s.monitoring.svc:9090
- --metrics-relist-interval=30s
- --rate-interval=60s
- --v=10
- --logtostderr=true
ports:
- containerPort: 443
securityContext:
runAsUser: 0
---
apiVersion: v1
kind: Service
metadata:
name: api
namespace: custom-metrics
spec:
ports:
- port: 443
targetPort: 443
selector:
app: custom-metrics-apiserver
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
name: v1beta1.custom.metrics.k8s.io
spec:
insecureSkipTLSVerify: true
group: custom.metrics.k8s.io
groupPriorityMinimum: 1000
versionPriority: 5
service:
name: api
namespace: custom-metrics
version: v1beta1
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: custom-metrics-server-resources
rules:
- apiGroups:
- custom-metrics.metrics.k8s.io
resources: ["*"]
verbs: ["*"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: hpa-controller-custom-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: custom-metrics-server-resources
subjects:
- kind: ServiceAccount
name: horizontal-pod-autoscaler
namespace: kube-system
3.部署手压测应用与HPA模板
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: sample-metrics-app
name: sample-metrics-app
spec:
replicas: 2
selector:
matchLabels:
app: sample-metrics-app
template:
metadata:
labels:
app: sample-metrics-app
spec:
tolerations:
- key: beta.kubernetes.io/arch
value: arm
effect: NoSchedule
- key: beta.kubernetes.io/arch
value: arm64
effect: NoSchedule
- key: node.alpha.kubernetes.io/unreachable
operator: Exists
effect: NoExecute
tolerationSeconds: 0
- key: node.alpha.kubernetes.io/notReady
operator: Exists
effect: NoExecute
tolerationSeconds: 0
containers:
- image: luxas/autoscale-demo:v0.1.2
name: sample-metrics-app
ports:
- name: web
containerPort: 8080
readinessProbe:
httpGet:
path: /
port: 8080
initialDelaySeconds: 3
periodSeconds: 5
livenessProbe:
httpGet:
path: /
port: 8080
initialDelaySeconds: 3
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: sample-metrics-app
labels:
app: sample-metrics-app
spec:
ports:
- name: web
port: 80
targetPort: 8080
selector:
app: sample-metrics-app
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: sample-metrics-app
labels:
service-monitor: sample-metrics-app
spec:
selector:
matchLabels:
app: sample-metrics-app
endpoints:
- port: web
---
kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2beta1
metadata:
name: sample-metrics-app-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: sample-metrics-app
minReplicas: 2
maxReplicas: 10
metrics:
- type: Object
object:
target:
kind: Service
name: sample-metrics-app
metricName: http_requests
targetValue: 100
---
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: sample-metrics-app
namespace: default
annotations:
traefik.frontend.rule.type: PathPrefixStrip
spec:
rules:
- http:
paths:
- path: /sample-app
backend:
serviceName: sample-metrics-app
servicePort: 80
这个压测的应用暴露了一个Prometheus
的接口,接口中的数据如下,其中http_requests_total
这个指标就是我们接下来伸缩使用的自定义指标。
[root@iZwz99zrzfnfq8wllk0dvcZ manifests]# curl 172.16.1.160:8080/metrics
# HELP http_requests_total The amount of requests served by the server in total
# TYPE http_requests_total counter
http_requests_total 3955684
4.部署压测应用
apiVersion: apps/v1beta1
kind: Deployment
metadata:
name: load-generator
labels:
app: load-generator
spec:
replicas: 1
selector:
matchLabels:
app: load-generator
template:
metadata:
labels:
app: load-generator
spec:
containers:
- name: load-generator
image: busybox
command:
- "sh"
- "-c"
- "while true; do wget -q -O- http://sample-metrics-app.default.svc.cluster.local; done"
5.查看HPA的状态与伸缩,稍等几分钟,Pod已经伸缩成功了。
workspace kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
php-apache Deployment/php-apache 0%/50% 1 10 1 21d
sample-metrics-app-hpa Deployment/sample-metrics-app 538133m/100 2 10 10 15h
最后
这篇文章主要是给大家一个对于autoscaling/v1
和autoscaling/v2beta1
的感性的认识和大体的操作方式,对于autoscaling/v1
我们不做过多的赘述,对于希望使用支持Custom Metrics
的autoscaling/v2beta1
的开发者也许会认为整体的操作流程过于复杂难以理解,我们会在下一篇文章中为大家详解autoscaling/v2beta1
使用Custom Metrics
的种种细节,帮助大家跟深入的理解这其中的原理与设计思路。