代码如下:
from __future__ import division, print_function, absolute_import import tensorflow as tf import tflearn from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.conv import conv_1d, global_max_pool from tflearn.layers.merge_ops import merge from tflearn.layers.estimator import regression from tflearn.data_utils import to_categorical, pad_sequences from tflearn.datasets import imdb import os from tensorflow.contrib.learn.python import learn from sklearn import metrics from sklearn.model_selection import train_test_split import numpy as np MAX_DOCUMENT_LENGTH = 200 EMBEDDING_SIZE = 50 n_words=0 def load_one_file(filename): x="" with open(filename) as f: for line in f: x+=line return x def load_files(rootdir,label): list = os.listdir(rootdir) x=[] y=[] for i in range(0, len(list)): path = os.path.join(rootdir, list[i]) if os.path.isfile(path): #print "Load file %s" % path y.append(label) x.append(load_one_file(path)) return x,y def load_data(): x=[] y=[] x1,y1=load_files("../data/movie-review-data/review_polarity/txt_sentoken/pos/",0) x2,y2=load_files("../data/movie-review-data/review_polarity/txt_sentoken/neg/", 1) x=x1+x2 y=y1+y2 return x,y def do_cnn(trainX, trainY,testX, testY): global n_words # Data preprocessing # Sequence padding trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.) testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.) # Converting labels to binary vectors trainY = to_categorical(trainY, nb_classes=2) testY = to_categorical(testY, nb_classes=2) # Building convolutional network network = input_data(shape=[None, MAX_DOCUMENT_LENGTH], name='input') network = tflearn.embedding(network, input_dim=n_words+1, output_dim=128) branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2") branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2") branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2") network = merge([branch1, branch2, branch3], mode='concat', axis=1) network = tf.expand_dims(network, 2) network = global_max_pool(network) network = dropout(network, 0.5) network = fully_connected(network, 2, activation='softmax') network = regression(network, optimizer='adam', learning_rate=0.001, loss='categorical_crossentropy', name='target') # Training model = tflearn.DNN(network, tensorboard_verbose=0) model.fit(trainX, trainY, n_epoch = 20, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32) if __name__ == '__main__': # IMDB Dataset loading global n_words x,y=load_data() x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=0) vp = learn.preprocessing.VocabularyProcessor(max_document_length=MAX_DOCUMENT_LENGTH, min_frequency=1) vp.fit(x) x_train = np.array(list(vp.transform(x_train))) x_test = np.array(list(vp.transform(x_test))) n_words=len(vp.vocabulary_) print('Total words: %d' % n_words) do_cnn(x_train, y_train,x_test, y_test)
准确率是100%
本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7908346.html,如需转载请自行联系原作者