k8s-pod简介(半原创)

文章部分总结和描述来自极客时间-深入剖析Kubernetes

前言

我们先看一下关于 k8s 相关的图,与本文无关,只是做一下笔记而已 . k8s-pod简介(半原创)

k8s-pod简介(半原创)

概述

我们都知道 k8s 具有编排的能力,假如我们的应用和基础设备都是以容器的形式存在(例如我们的tomcat 和 war 包),那么它是如何编排的呢?我们知道

容器的本质是进程

那么实际编排可以形象地想象成一个个进程组,而每个进程组内有多个进程,而 pod 就是对应着进程组这个角色.

pod 的实现

我们看一下 k8s 中 pod 具体指的是什么? Pod,其实是一组共享了某些资源的容器。Pod 里的所有容器,共享的是同一个 Network Namespace,并且可以声明共享同一个 Volume。 假如只是共享同一个 Volume ,是不是根本不用 pod 这样的东西就可以实现了呢?例如 : 一个有 A、B 两个容器的 Pod,不就是等同于一个容器(容器 A)共享另外一个容器(容器 B)的网络和 Volume , 此次我只需要执行下面的命令就行了

$ docker run --net=B --volumes-from=B --name=A image-A ...

可是这样 容器B 就必须优先于A 创建起来了,不然如何共享呀. 如果真这样做的话,容器 B 就必须比容器 A 先启动,这样一个 Pod 里的多个容器就不是对等关系,而是拓扑关系了。

所以,在 Kubernetes 项目里,Pod 的实现需要使用一个中间容器,这个容器叫作 Infra 容器。在这个 Pod 中,Infra 容器永远都是第一个被创建的容器,而其他用户定义的容器,则通过 Join Network Namespace 的方式,与 Infra 容器关联在一起。这样的组织关系,可以用下面这样一个示意图来表达:

k8s-pod简介(半原创)

如上图所示,这个 Pod 里有两个用户容器 A 和 B,还有一个 Infra 容器。很容易理解,在 Kubernetes 项目里,Infra 容器一定要占用极少的资源,所以它使用的是一个非常特殊的镜像,叫作:k8s.gcr.io/pause。这个镜像是一个用汇编语言编写的、永远处于“暂停”状态的容器,解压后的大小也只有 100~200 KB 左右。

而在 Infra 容器“Hold 住”Network Namespace 后,用户容器就可以加入到 Infra 容器的 Network Namespace 当中了。所以,如果你查看这些容器在宿主机上的 Namespace 文件(这个 Namespace 文件的路径,我已经在前面的内容中介绍过),它们指向的值一定是完全一样的。

这也就意味着,对于 Pod 里的容器 A 和容器 B 来说:

  • 它们可以直接使用 localhost 进行通信;
  • 它们看到的网络设备跟 Infra 容器看到的完全一样;
  • 一个 Pod 只有一个 IP 地址,也就是这个 Pod 的 Network Namespace 对应的 IP 地址; 当然,其他的所有网络资源,都是一个 Pod 一份,并且被该 Pod 中的所有容器共享; Pod 的生命周期只跟 Infra 容器一致,而与容器 A 和 B 无关。而对于同一个 Pod 里面的所有用户容器来说,它们的进出流量,也可以认为都是通过 Infra 容器完成的。这一点很重要,因为将来如果你要为 Kubernetes 开发一个网络插件时,应该重点考虑的是如何配置这个 Pod 的 Network Namespace,而不是每一个用户容器如何使用你的网络配置,这是没有意义的。

这就意味着,如果你的网络插件需要在容器里安装某些包或者配置才能完成的话,是不可取的:Infra 容器镜像的 rootfs 里几乎什么都没有,没有你随意发挥的空间。当然,这同时也意味着你的网络插件完全不必关心用户容器的启动与否,而只需要关注如何配置 Pod,也就是 Infra 容器的 Network Namespace 即可。

有了这个设计之后,共享 Volume 就简单多了:Kubernetes 项目只要把所有 Volume 的定义都设计在 Pod 层级即可。

这样,一个 Volume 对应的宿主机目录对于 Pod 来说就只有一个,Pod 里的容器只要声明挂载这个 Volume,就一定可以共享这个 Volume 对应的宿主机目录。比如下面这个例子:

apiVersion: v1
kind: Pod
metadata:
  name: two-containers
spec:
  restartPolicy: Never
  volumes:
  - name: shared-data
    hostPath:      
      path: /data
  containers:
  - name: nginx-container
    image: nginx
    volumeMounts:
    - name: shared-data
      mountPath: /usr/share/nginx/html
  - name: debian-container
    image: debian
    volumeMounts:
    - name: shared-data
      mountPath: /pod-data
    command: ["/bin/sh"]
    args: ["-c", "echo Hello from the debian container > /pod-data/index.html"]

容器的设计模式

sidecar 设计模式

第一个最典型的例子是:WAR 包与 Web 服务器。 我们现在有一个 Java Web 应用的 WAR 包,它需要被放在 Tomcat 的 webapps 目录下运行起来。

假如,你现在只能用 Docker 来做这件事情,那该如何处理这个组合关系呢?

  • 一种方法是,把 WAR 包直接放在 Tomcat 镜像的 webapps 目录下,做成一个新的镜像运行起来。可是,这时候,如果你要更新 WAR 包的内容,或者要升级 Tomcat 镜像,就要重新制作一个新的发布镜像,非常麻烦。
  • 另一种方法是,你压根儿不管 WAR 包,永远只发布一个 Tomcat 容器。不过,这个容器的 webapps 目录,就必须声明一个 hostPath 类型的 Volume,从而把宿主机上的 WAR 包挂载进 Tomcat 容器当中运行起来。不过,这样你就必须要解决一个问题,即:如何让每一台宿主机,都预先准备好这个存储有 WAR 包的目录呢?这样来看,你只能独立维护一套分布式存储系统了。

实际上,有了 Pod 之后,这样的问题就很容易解决了。我们可以把 WAR 包和 Tomcat 分别做成镜像,然后把它们作为一个 Pod 里的两个容器“组合”在一起。这个 Pod 的配置文件如下所示:

apiVersion: v1
kind: Pod
metadata:
  name: javaweb-2
spec:
  initContainers:
  - image: geektime/sample:v2
    name: war
    command: ["cp", "/sample.war", "/app"]
    volumeMounts:
    - mountPath: /app
      name: app-volume
  containers:
  - image: geektime/tomcat:7.0
    name: tomcat
    command: ["sh","-c","/root/apache-tomcat-7.0.42-v2/bin/start.sh"]
    volumeMounts:
    - mountPath: /root/apache-tomcat-7.0.42-v2/webapps
      name: app-volume
    ports:
    - containerPort: 8080
      hostPort: 8001 
  volumes:
  - name: app-volume
    emptyDir: {}

在 Pod 中,所有 Init Container 定义的容器,都会比 spec.containers 定义的用户容器先启动。并且,Init Container 容器会按顺序逐一启动,而直到它们都启动并且退出了,用户容器才会启动。

所以,这个 Init Container 类型的 WAR 包容器启动后,我执行了一句"cp /sample.war /app",把应用的 WAR 包拷贝到 /app 目录下,然后退出。

而后这个 /app 目录,就挂载了一个名叫 app-volume 的 Volume。

接下来就很关键了。Tomcat 容器,同样声明了挂载 app-volume 到自己的 webapps 目录下。

所以,等 Tomcat 容器启动时,它的 webapps 目录下就一定会存在 sample.war 文件:这个文件正是 WAR 包容器启动时拷贝到这个 Volume 里面的,而这个 Volume 是被这两个容器共享的。

像这样,我们就用一种“组合”方式,解决了 WAR 包与 Tomcat 容器之间耦合关系的问题。

实际上,这个所谓的“组合”操作,正是容器设计模式里最常用的一种模式,它的名字叫:sidecar。

顾名思义,sidecar 指的就是我们可以在一个 Pod 中,启动一个辅助容器,来完成一些独立于主进程(主容器)之外的工作。

比如,在我们的这个应用 Pod 中,Tomcat 容器是我们要使用的主容器,而 WAR 包容器的存在,只是为了给它提供一个 WAR 包而已。所以,我们用 Init Container 的方式优先运行 WAR 包容器,扮演了一个 sidecar 的角色。

其他设计模式

https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns

总结

以下总结来自课程,我觉得可以仔细读一下,很经典也很好理解

Pod 是 Kubernetes 项目与其他单容器项目相比最大的不同,也是一位容器技术初学者需要面对的第一个与常规认知不一致的知识点。

事实上,直到现在,仍有很多人把容器跟虚拟机相提并论,他们把容器当做性能更好的虚拟机,喜欢讨论如何把应用从虚拟机无缝地迁移到容器中。

但实际上,无论是从具体的实现原理,还是从使用方法、特性、功能等方面,容器与虚拟机几乎没有任何相似的地方;也不存在一种普遍的方法,能够把虚拟机里的应用无缝迁移到容器中。因为,容器的性能优势,必然伴随着相应缺陷,即:它不能像虚拟机那样,完全模拟本地物理机环境中的部署方法。

所以,这个“上云”工作的完成,最终还是要靠深入理解容器的本质,即:进程

实际上,一个运行在虚拟机里的应用,哪怕再简单,也是被管理在 systemd 或者 supervisord 之下的一组进程,而不是一个进程。这跟本地物理机上应用的运行方式其实是一样的。这也是为什么,从物理机到虚拟机之间的应用迁移,往往并不困难。

可是对于容器来说,一个容器永远只能管理一个进程。更确切地说,一个容器,就是一个进程。这是容器技术的“天性”,不可能被修改。所以,将一个原本运行在虚拟机里的应用,“无缝迁移”到容器中的想法,实际上跟容器的本质是相悖的。

这也是当初 Swarm 项目无法成长起来的重要原因之一:一旦到了真正的生产环境上,Swarm 这种单容器的工作方式,就难以描述真实世界里复杂的应用架构了。

所以,你现在可以这么理解 Pod 的本质:

Pod,实际上是在扮演传统基础设施里“虚拟机”的角色;而容器,则是这个虚拟机里运行的用户程序。

所以下一次,当你需要把一个运行在虚拟机里的应用迁移到 Docker 容器中时,一定要仔细分析到底有哪些进程(组件)运行在这个虚拟机里。

然后,你就可以把整个虚拟机想象成为一个 Pod,把这些进程分别做成容器镜像,把有顺序关系的容器,定义为 Init Container。这才是更加合理的、松耦合的容器编排诀窍,也是从传统应用架构,到“微服务架构”最自然的过渡方式。

注意:Pod 这个概念,提供的是一种编排思想,而不是具体的技术方案。所以,如果愿意的话,你完全可以使用虚拟机来作为 Pod 的实现,然后把用户容器都运行在这个虚拟机里。比如,Mirantis 公司的virtlet 项目就在干这个事情。甚至,你可以去实现一个带有 Init 进程的容器项目,来模拟传统应用的运行方式。这些工作,在 Kubernetes 中都是非常轻松的,也是我们后面讲解 CRI 时会提到的内容。

相反的,如果强行把整个应用塞到一个容器里,甚至不惜使用 Docker In Docker 这种在生产环境中后患无穷的解决方案,恐怕最后往往会得不偿失。

参考资料

  • 深入剖析Kubernetes课程
上一篇:2021-03-06


下一篇:Dubbo 通信协议 dubbo 协议为什么要消费者比提供者个数多