给作物看病的AI、走路“长眼”的拖拉机、上帝视角的卫星数据分析——未来吃饭就靠它们了。
图片来源:Blue River Technology
人类又面临了一项危机——随着人口不断膨胀,到2050年人类总人口也许要达到100亿,然而,地球却没有等比例放大,这意味着同样面积的土地资源必须喂饱翻了n备的人口。随着全球变暖以及跟随而来的水资源短缺,人类将面临严重的粮食问题。
也许机器的到来是一个历史偶然。真正智能的机器人和机器学习算法也许能帮助推动一场新的“绿色革命”,从而解决日渐严重的口粮问题。想象一下,如果卫星可以自动检测旱灾发生模式,如果拖拉机可以通过“目测”消灭患病的农作物,如果一个人工智能支持的智能APP可以让农民知道如何应对农田里的农作物病害。
稻草人要成为历史了,保护农业的未来就拜托人工智能了。
AI给农作物“看病”
深度学习是一种计算方法,程序员不用确切地告诉计算机该做什么,而是训练计算机识别某些模式。你可以给计算机输入患病和健康的农作物叶子图片,并做上标记。计算机可以以此学会患病和健康的叶子看起来有什么不同,并能独立判断新作物是否健康。
这就是生物学家David Hughes和流行病学家Marcel Salathe的研究,他们用感染了26种疾病的14株作物进行了实验。他们在计算机中输入了超过五万张图片,计算机程序通过自主学习,最终能够以99.35%的正确率判断研究人员输入的新图片。
不过,这些是动过手脚的图片,其中的灯光和背景都是一致的,为计算机识别叶片图像降低了难度。如果从互联网上随机下载一张患病作物的叶片照片,让计算机去判断,软件的准确率就降低到了30%-40%。
不太好。不过,Hughes和Salathe希望能使用这项人工智能技术支持他们的APP“Plant Village”,这个APP可以让世界各地的农民给自己患病的作物拍张照片,上传到论坛上,让专家来诊断农作物疾病。为了提高这项技术的“智商”,他们会继续给AI输入更多的患病作物照片。“从各种不同渠道而来的图片越多越好,渠道指的是照片拍摄的方式、季节、位置等等因素。”Salathe说,“软件可以吸收这些信息,不断学习。”
这不只是排除农作物之间的疾病传染,还有很多其他因素会影响农作物。“大部分影响生长的都是生理压力,例如缺钙、缺镁或者盐分太高、热量太高等,”Hughes说,“人们有时候会以为是细菌或者真菌疾病。”误诊导致农民浪费了时间和金钱去买杀虫剂或者除草剂。未来,人工智能可以帮助农民更加准确地定位问题所在。
在那之后,人类将夺回控制权——因为虽然APP可以定位问题,但是没法像人类专家一样,考虑紧气候、突然、季节等因素,给农民提供最适合的解决办法。联合国粮食及农业组织(FAO)认为这类技术是农作物管理的一种“有用工具”,但还是要听专家说了算。因此,FAO的植物病理学家Fazil Dusunceli说,非常欢迎这样的技术帮助,但是“最终病害管理决策应该与现场的专家一起合作制定。”
走路“长眼”的拖拉机
可以说,现在没有哪一个国家在农业方面可以高枕无忧——发展中国家亟需农业知识,而发达国家则淹没在杀虫剂和除草剂之中。在美国,仅仅在玉米、大豆和棉花作物上,每年农民使用的除草剂就多达三亿一千万磅(编者注:相当于大约一亿四千万公斤)。
一家叫做蓝色河流科技(Blue River Technology)的公司可能找到了一种解决办法,至少对卷心菜来说有了新的希望。公司的“卷心菜机器人”(LettuceBot)长得像一台普通的拖拉机,但是其中包含了机器学习的智能技术支持。
公司称,“卷心菜机器人”可以在驶过农田的时候,每分钟拍摄五千张幼苗的照片,使用算法和机器视觉来识别每一株植物到底是卷心菜还是杂草。“这是基于机器学习计算和计算机视觉的力量,”Jeremy Howard说,他是深度学习机构Enlitic的创始人。他补充道,一块图形芯片识别图像只要0.02秒的时间。
在四分之一英寸(编著注:大约0.63厘米)的精度下,机器人可以在行进中定位杂草,并在每株杂草上喷洒除草剂。如果机器人“目测”到一颗卷心菜生长得不然太理性,它也会给它喷除草剂(农民过度种植多达5倍的卷心菜,所以偶尔牺牲掉一颗也没关系)。如果两株菜苗长得过于靠近,机器人会知道这不是一颗特别大的菜苗,并且把这两株也摧毁。
如果你觉得机器人的做法太残酷,我们先来看看另一种选择:不管三七二十一,先给正片农田喷上除草剂。“这类似于说,如果旧金山出现了一种传染病,我们唯一的办法就是给所有人,不管男女老少,都打一针抗生素。”Blue River Technology公司的Ben Chostner说,“人们的病可以治好,但是这很浪费钱。而且,这种办法没有把抗生素的效果发挥得最好。”
而有了“卷心菜机器人”,Chostner说农民可以将化学物品的使用量减少90%。而且,机器人已经开始努力干活了——Blue River管理的农田提供了美国每年卷心菜消耗量的10%。
图片来源:Blue River Technology。
上帝视角的卫星
NASA的Landsat卫星在我们头顶上空400英里(编者注:大约643.74千米)环绕地球,为地球表面提供了魔法般强大的调查数据。各种层面的信息数量太大,对于人类来说很难消化,但是有了机器学习算法,这根本是小菜一碟。
这对农业监管来说具有极大价值,尤其是在发展中国家,*和银行在决策中非常缺乏数据支持,难以决定应该给哪些农民批准贷款或者紧急支援。举个例子,在印度的一次旱灾中,我们不仅看到不同的区域有不同程度的受灾影响,而且在区域内,一部分农民比其他人能容易获得水资源。
因此,一家名叫Harvesting的公司正在使用机器学习,大规模分析卫星数据,希望帮助机构更加高效地分配财政资源。“我们对这项技术的期望是分离出一部分农民和村庄,让银行或者*将资金导向正确的群体。”Harvesting公司CEO Ruchit Garg说。他说,一个人类分析师可以同时可以处理10项、10项变量,而机器学习算法可以处理超过2000项变量。这完全不是同一个层级上。
随着全球变暖让气候越来越混乱,*面临的压力越来越大,必须能够正确分配有限的资源。传统上,农业在印度算是一个相对容易预测的行业,至少从人类对环境的可控性这个意义上来说。“我从我的父亲、我的祖父等祖祖辈辈人之中学到的知识,就是我用来耕田的知识,就是我对于季节环境的认识。”Garg说,“但是,因为气候剧变,我所面临的,不再是我的先人们所面临过的环境了。”
对,这是一个完全不同的世界了。农民可能在变化的环境中遭受打击,或者也可以进入更加智能的农业时代。农民可以获得更多数据、更多人工智能、更多可以喷洒化学品的机器人。