1、冒泡排序(BubbleSort)
介绍:重复的遍历数列,一次比较两个元素,如果他们顺序错误就进行交换。
2016年1月22日总结:
冒泡排序就是比较相邻的两个元素,保证每次遍历最后的元素最大。
排序过程需要用到:int i,j;
1 def bubble_sort(arry): 2 n = len(arry) #获得数组的长度 3 for i in range(n): 4 for j in range(1,n-i): 5 if arry[j-1] > arry[j] : #如果前者比后者大 6 arry[j-1],arry[j] = arry[j],arry[j-1] #则交换两者 7 return arry
优化方案:
(1)某一趟遍历如果没有数据交换,则说明已经排好了;
(2)记录某次遍历时最后发生数据交换的位置,这个位置之后的数据显然已经有序了,不用再排序了;
2、选择排序(SelectionSort)
介绍:从未排序的数列中找到最小(大)的元素,放在数列的起始(末尾),直到整个数列都进行了排序;
2016年1月22日总结:
选择排序就是每次迭代选择最大值,然后放到最后。
排序过程需要用到:int i,j; 和 int temp(保存最大值);
1 def select_sort(ary): 2 n = len(ary) 3 for i in range(0,n): 4 min = i #最小元素下标标记 5 for j in range(i+1,n): 6 if ary[j] < ary[min] : 7 min = j #找到最小值的下标 8 ary[min],ary[i] = ary[i],ary[min] #交换两者 9 return ary
3、插入排序(InsertionSort)
介绍:一个有序数列,一个无序数列,遍历无序数列,把数据插入到有序数列的相应位置;
2016年1月22日总结:
插入排序就是把无序数列依次插入有序数列
排序过程需要用到int i,j;和int idx(用来保存下标);
1 def insert_sort(ary): 2 n = len(ary) 3 for i in range(1,n): 4 if ary[i] < ary[i-1]: 5 temp = ary[i] 6 index = i #待插入的下标 7 for j in range(i-1,-1,-1): #从i-1 循环到 0 (包括0) 8 if ary[j] > temp : 9 ary[j+1] = ary[j] 10 index = j #记录待插入下标 11 else : 12 break 13 ary[index] = temp 14 return ary
4、希尔排序(ShellSort)
介绍:也称为递减增量排序算法,实质是分组插入排序。希尔排序是非稳定排序算法。
2016年1月22日总结:
希尔排序就是分组插入排序,主要有两点:一个是控制分组,一个是插入排序。
基本思想:将数组列在一个表中,对表的每列进行插入排序,重复这个过程,每次增加列的长度,直到最后只有一列。(把数组说成是表是为了更好理解这个算法,算法本身还是用数组进行排序)
例如,有数组 [ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ] ,我们先以步长为5进行排序,我们可以通过将数组放到有5列的表中进行观察:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
然后对每列进行插入排序:
10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45
这时候数组实际上是这样的: [ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ] 。这时10已经处于正确位置了,然后再以步长3进行排序:
10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45
对每列进行插入排序之后是这样的:
10 14 13 25 23 33 27 25 59 39 65 73 45 94 82 94
最后以步长1排序(就是简单的插入排序了)
1 def shell_sort(ary): 2 n = len(ary) 3 gap = round(n/2) #初始步长 , 用round四舍五入取整 4 while gap > 0 : 5 for i in range(gap,n): #每一列进行插入排序 , 从gap 到 n-1 6 temp = ary[i] 7 j = i 8 while ( j >= gap and ary[j-gap] > temp ): #插入排序 9 ary[j] = ary[j-gap] 10 j = j - gap 11 ary[j] = temp 12 gap = round(gap/2) #重新设置步长 13 return ary
上面源码的步长的选择是从n/2
开始,每次再减半,直至为0。步长的选择直接决定了希尔排序的复杂度。(*上的代码)
1 void shell_sort(int arr[], int len) { 2 int gap, i, j; 3 int temp; 4 for (gap = len >> 1; gap > 0; gap >>= 1) 5 for (i = gap; i < len; i++) { 6 temp = arr[i]; 7 for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap) 8 arr[j + gap] = arr[j]; 9 arr[j + gap] = temp; 10 } 11 }
希尔排序动画演示
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
5、归并排序(MergeSort)
介绍:归并排序是采用分治法的一个典型应用。
2016年1月22日总结:
归并排序,主要有两步:分解+合并
基本思想:先递归分解数组,再合并数组;
先考虑简单一点的,合并两个有序数组,基本思路就是比较两个数组的最前面的数,谁小就取谁,取了后相应的指针就往后移一位,然后再比较,直至一个数组为空,最后把一个数组剩余部分复制过来即可。
再考虑把上述问题进行递归分解,基本思路就是将数组分解成left和right两部分,如果这两个数组内部的数据是有序的,那么就可以用上面合并数组的方法将这个两个数组合并排序。如何让这两个数组内部是有序的呢?可以再二分,直至分解出的小组只含有一个元素位置,此时认为该小组内部有序,然后合并排序相邻的两个小组即可。
C++递归版本(*)
1 template<typename T> 2 void merge_sort_recursive(T arr[], T reg[], int start, int end) { 3 if (start >= end) 4 return; 5 int len = end - start, mid = (len >> 1) + start; 6 int start1 = start, end1 = mid; 7 int start2 = mid + 1, end2 = end; 8 merge_sort_recursive(arr, reg, start1, end1); 9 merge_sort_recursive(arr, reg, start2, end2); 10 int k = start; 11 while (start1 <= end1 && start2 <= end2) 12 reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++]; 13 while (start1 <= end1) 14 reg[k++] = arr[start1++]; 15 while (start2 <= end2) 16 reg[k++] = arr[start2++]; 17 for (k = start; k <= end; k++) 18 arr[k] = reg[k]; 19 } 20 template<typename T> //整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能 21 void merge_sort(T arr[], const int len) { 22 T reg[len]; 23 merge_sort_recursive(arr, reg, 0, len - 1); 24 }
Python
1 def merge_sort(ary): 2 if len(ary) <= 1 : return ary 3 num = int(len(ary)/2) #二分分解 4 left = merge_sort(ary[:num]) 5 right = merge_sort(ary[num:]) 6 return merge(left,right) #合并数组 7 8 def merge(left,right): 9 '''合并操作, 10 将两个有序数组left[]和right[]合并成一个大的有序数组''' 11 l,r = 0,0 #left与right数组的下标指针 12 result = [] 13 while l<len(left) and r<len(right) : 14 if left[l] < right[r]: 15 result.append(left[l]) 16 l += 1 17 else: 18 result.append(right[r]) 19 r += 1 20 result += left[l:] 21 result += right[r:] 22 return result
6、快速排序(QuickSort)
介绍:
快速排序通常明显比同为O(n*logn)的其他算法更快,因此常被采用,而且快排也采用了分治法的思想,所以在很多笔试面试中经常看到快排的影子。
2016年1月22日总结:
快速排序主要有两步:排序+递归
(1)从数列中挑出一个元素作为基准数;
(2)分区过程,将比基数大的放到右边,小于或等于基数的放到左边;
(3)再对左右区间递归执行(2),直至各区间只有一个数;
1 def quick_sort(ary): 2 return qsort(ary,0,len(ary)-1) 3 4 def qsort(ary,left,right): 5 #快排函数,ary为待排序数组,left为待排序的左边界,right为右边界 6 if left >= right : return ary 7 key = ary[left] #取最左边的为基准数 8 lp = left #左指针 9 rp = right #右指针 10 while lp < rp : 11 while ary[rp] >= key and lp < rp : 12 rp -= 1 13 while ary[lp] <= key and lp < rp : 14 lp += 1 15 ary[lp],ary[rp] = ary[rp],ary[lp] 16 ary[left],ary[lp] = ary[lp],ary[left] 17 qsort(ary,left,lp-1) 18 qsort(ary,rp+1,right) 19 return ary
7、堆排序(HeapSort)
介绍:
堆排序在top K问题中使用比较频繁。堆排序是采用二叉堆的数据结构来实现的,虽然实质上还是一维数组。二叉堆是一个近似完全二叉树。
2016年1月22日总结:
堆排序,首先要理解二叉堆(近似完全二叉树),把无序数组看成二叉堆的层次遍历;
然后从最后一个父节点开始调整二叉堆为最大堆,这是根节点是最大的元素;
接着把根节点和二叉堆中最后一个元素互换位置,这是最大的元素就在数组的后边,而最后一个元素变成了根元素,二叉堆的结点数就相当于少了一个;然后调整新的二叉堆(比之前的二叉堆少了一个元素);重复这步;
二叉堆有以下性质:
(1)父节点的键值总是大于(小于)或等于任何一个子节点的键值;
(2)每个节点的左右子树都是一个二叉堆
步骤:
(1)构造最大堆(Build_Max_Heap):若数组下标范围为0~n,考虑到单独一个元素是大根堆,则从下标n/2开始的元素均为大根堆。于是只要从n/2-1开始,向前一次构造大根堆,这样就能保证,构造到某个节点时,它的左右子树都已经是大根堆;
(2)堆排序(HeapSort):由于堆是用数组模拟的,得到一个大根堆后,数组内部并不是有序的。因此需要将堆化数组有序化。
思想是:移除根节点并做最大堆调整的递归运算。
第一次将heap[0]和heap[n-1]交换,再对heap[0...n-2]做最大堆调整。
第二次将heap[0]和heap[n-2]交换,再对heap[0...n-3] 做最大堆调整。
重复上述操作直至heap[0]与heap[1]交换。
由于每次都是将最大的数并入到后面的有序区间,故操作完后整个数组就是有序的了。
(3)最大堆调整(Max_Heapify):该方法是提供给上述两个过程调用的。目的是将堆的末端子节点做调整,似的子节点永远小于父节点。
另一个动画演示(可以自定义参数):http://www.cs.usfca.edu/~galles/visualization/flash.html
1 def heap_sort(ary) : 2 n = len(ary) 3 first = int(n/2-1) #最后一个非叶子节点 4 for start in range(first,-1,-1) : #构造大根堆 5 max_heapify(ary,start,n-1) 6 for end in range(n-1,0,-1): #堆排,将大根堆转换成有序数组 7 ary[end],ary[0] = ary[0],ary[end] 8 max_heapify(ary,0,end-1) 9 return ary 10 11 12 #最大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点 13 #start为当前需要调整最大堆的位置,end为调整边界 14 def max_heapify(ary,start,end): 15 root = start 16 while True : 17 child = root*2 +1 #调整节点的子节点 18 if child > end : break 19 if child+1 <= end and ary[child] < ary[child+1] : 20 child = child+1 #取较大的子节点 21 if ary[root] < ary[child] : #较大的子节点成为父节点 22 ary[root],ary[child] = ary[child],ary[root] #交换 23 root = child 24 else : 25 break
总结
上述七种排序算法的对比:
本文转自ZH奶酪博客园博客,原文链接:http://www.cnblogs.com/CheeseZH/p/4552549.html,如需转载请自行联系原作者