Python的pandas包对表格化的数据处理能力很强,而SQL数据库的数据就是以表格的形式储存,因此经常将sql数据库里的数据直接读取为dataframe,分析操作以后再将dataframe存到sql数据库中。而pandas中的read_sql和to_sql函数就可以很方便得从sql数据库中读写数据。
read_sql
参见pandas.read_sql的文档,read_sql主要有如下几个参数:
- sql:SQL命令字符串
- con:连接sql数据库的engine,一般可以用SQLalchemy或者pymysql之类的包建立
- index_col: 选择某一列作为index
- coerce_float:非常有用,将数字形式的字符串直接以float型读入
- parse_dates:将某一列日期型字符串转换为datetime型数据,与pd.to_datetime函数功能类似。可以直接提供需要转换的列名以默认的日期形式转换,也可以用字典的格式提供列名和转换的日期格式,比如{column_name: format string}(format string:"%Y:%m:%H:%M:%S")。
- columns:要选取的列。一般没啥用,因为在sql命令里面一般就指定要选择的列了
- chunksize:如果提供了一个整数值,那么就会返回一个generator,每次输出的行数就是提供的值的大小。
- params:其他的一些执行参数,没用过不太清楚。。。
以链接常见的mysql数据库为例:
import pandas as pd import pymysql import sqlalchemy from sqlalchemy import create_engine # 1\. 用sqlalchemy构建数据库链接engine connect_info = engine = create_engine(connect_info) # sql 命令 sql_cmd = "SELECT * FROM table" df = pd.read_sql(sql=sql_cmd, con=engine) # 2\. 用DBAPI构建数据库链接engine con = pymysql.connect(host=localhost, user=username, password=password, database=dbname, charset='utf8', use_unicode=True) df = pd.read_sql(sql_cmd, con)
解释一下 #1: 这个是sqlalchemy中链接数据库的URL格式:dialect[+driver]://user:password@host/dbname[?key=value..]
。dialect代表书库局类型,比如mysql, oracle, postgresql。driver代表DBAPI的名字,比如psycopg2,pymysql等。具体说明可以参考这里。此外由于数据里面有中文的时候就需要将charset设为utf8。
to_sql
参见pandas.to_sql函数,主要有以下几个参数:
name: 输出的表名
con: 与read_sql中相同
if_exits: 三个模式:fail,若表存在,则不输出;replace:若表存在,覆盖原来表里的数据;append:若表存在,将数据写到原表的后面。默认为fail
index:是否将df的index单独写到一列中
index_label:指定列作为df的index输出,此时index为True
chunksize: 同read_sql
-
dtype: 指定列的输出到数据库中的数据类型。字典形式储存:{column_name: sql_dtype}。常见的数据类型有sqlalchemy.types.INTEGER(), sqlalchemy.types.NVARCHAR(),sqlalchemy.Datetime()等,具体数据类型可以参考这里
还是以写到mysql数据库为例:df.to_sql(name='table', con=con, if_exists='append', index=False, dtype={'col1':sqlalchemy.types.INTEGER(), 'col2':sqlalchemy.types.NVARCHAR(length=255), 'col_time':sqlalchemy.DateTime(), 'col_bool':sqlalchemy.types.Boolean })
注:如果不提供dtype,to_sql会自动根据df列的dtype选择默认的数据类型输出,比如字符型会以sqlalchemy.types.TEXT类型输出,相比NVARCHAR,TEXT类型的数据所占的空间更大,所以一般会指定输出为NVARCHAR;而如果df的列的类型为np.int64时,将会导致无法识别并转换成INTEGER型,需要事先转换成int类型(用map,apply函数可以方便的转换)。