H5版俄罗斯方块(3)---游戏的AI算法

前言:
  算是"long long ago"的事了, 某著名互联网公司在我校举行了一次"lengend code"的比赛, 其中有一题就是"智能俄罗斯方块". 本着一向甘做分母, 闪耀分子的绿叶精神, 着着实实地打了一份酱油. 这次借学习H5的机会, 再来重温下俄罗斯方块的AI编写.
  本系列的文章链接如下:
  1). 需求分析和目标创新
  2). 游戏的基本框架和实现
  这些博文和代码基本是同步的, 并不确定需求是否会改变, 进度是否搁置, 但期翼自己能坚持和实现.

演示&下载:
  该版本依旧较为简陋, 效果如图所示:
  H5版俄罗斯方块(3)---游戏的AI算法
  其代码下载地址为: http://pan.baidu.com/s/1sjyY7FJ
  下载解压目录结构如下所示:
  H5版俄罗斯方块(3)---游戏的AI算法
  点击tetris.html, 在浏览器上运行(由于HTML5程序, 最好在Chrome/Firefox上运行).

算法分析:
  核心算法参考了如下博文:
  • 传统规则俄罗斯方块AI技术介绍 
  • 控制台彩色版带AI的『俄罗斯方块』
  本程序也采用改进的Pierre Dellacherie算法(只考虑当前方块).

  其对局面的评估, 采用6项指标:
  1). Landing Height(下落高度): The height where the piece is put (= the height of the column + (the height of the piece / 2))
  2). Rows eliminated(消行数): The number of rows eliminated.
  3). Row Transitions(行变换): The total number of row transitions. A row transition occurs when an empty cell is adjacent to a filled cell on the same row and vice versa.
  4). Column Transitions(列变换): The total number of column transitions. A column transition occurs when an empty cell is adjacent to a filled cell on the same column and vice versa.
  5). Number of Holes(空洞数): A hole is an empty cell that has at least one filled cell above it in the same column.
  6). Well Sums(井数): A well is a succession of empty cells such that their left cells and right cells are both filled.

  对各个指标进行加权求和, 权重系数取自经验值:

1   -4.500158825082766
2   3.4181268101392694
3   -3.2178882868487753
4   -9.348695305445199
5   -7.899265427351652
6   -3.3855972247263626

源码解读:
  代码文件结构如图所示:
  H5版俄罗斯方块(3)---游戏的AI算法
  • tetris_base.js: 公共的数据结构, 包括方块定义和方块池等
  • tetris_ai.js: 具体定义了AI的核心算法和数据结构.
  • tetris_game.js: 是整个程序的展示和驱动.
  这边主要讲讲tetris_ai.js这个代码文件, 里面有三个重要的类, MoveGenerator, Evaluator, AIStrategy.
  MoveGenerator用于生成各个可行落点以及对应的路径线路:

    /*
  * @brief 走法生成器
  */
    function MoveGenerator() {
    }   MoveGenerator.prototype.generate = function(tetrisUnit, shape) { var keymapFunc = function(x, y, idx) {
return "" + x + ":" + y + ":" + idx;
} var moveMapFunc = function(step) {
return {x:step.x, y:step.y, idx:step.idx};
} var results = []; var boards = tetrisUnit.boards;
var rownum = tetrisUnit.row;
var colnum = tetrisUnit.col;
var shapeArrs = shape.shapes; var occupy = {} var actionQueues = [];
actionQueues.push({x:shape.x, y:shape.y, idx:shape.idx, prev:-1});
occupy[keymapFunc(shape.x, shape.y, shape.idx)] = true; var head = 0;
while ( head < actionQueues.length ) {
var step = actionQueues[head]; // 1). 向左移动一步
var tx = step.x - 1;
var ty = step.y;
var tidx = step.idx;
if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
var key = keymapFunc(tx, ty, tidx);
if ( !occupy.hasOwnProperty(key) ) {
actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
occupy[key] = true;
}
} // 2). 向右移动一步
tx = step.x + 1;
ty = step.y;
tidx = step.idx;
if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
var key = keymapFunc(tx, ty, tidx);
if ( !occupy.hasOwnProperty(key) ) {
actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
occupy[key] = true;
}
} // 3). 旋转一步
tx = step.x;
ty = step.y;
tidx = (step.idx + 1) % 4;
if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
var key = keymapFunc(tx, ty, tidx);
if ( !occupy.hasOwnProperty(key) ) {
actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
occupy[key] = true;
}
} // 4). 向下移动一步
tx = step.x;
ty = step.y + 1;
tidx = step.idx;
if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
var key = keymapFunc(tx, ty, tidx);
if ( !occupy.hasOwnProperty(key) ) {
actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
occupy[key] = true;
}
} else { // *) 若不能向下了, 则为方块的一个终结节点.
var tmpMoves = [];
tmpMoves.push(moveMapFunc(step));
var tprev = step.prev;
while ( tprev != -1 ) {
tmpMoves.push(moveMapFunc(actionQueues[tprev]));
tprev = actionQueues[tprev].prev;
}
tmpMoves.reverse(); results.push({last:step, moves:tmpMoves});
}
head++;
}
return results; }

   Evaluator类, 则把之前的评估因素整合起来:

    function Evaluator() {
} Evaluator.prototype.evaluate = function(boards) {
} function PierreDellacherieEvaluator() {
} PierreDellacherieEvaluator.prototype = new Evaluator();
PierreDellacherieEvaluator.prototype.constructor = PierreDellacherieEvaluator; PierreDellacherieEvaluator.prototype.evaluate = function(boards, shape) {
return (-4.500158825082766) * landingHeight(boards, shape) // 下落高度
+ (3.4181268101392694) * rowsEliminated(boards, shape) // 消行个数
+ (-3.2178882868487753) * rowTransitions(boards) // 行变换
+ (-9.348695305445199) * colTransitions(boards) // 列变化
+ (-7.899265427351652) * emptyHoles(boards) // 空洞个数
+ (-3.3855972247263626) * wellNums(boards); // 井数
}

  AIStrategy整合了落地生成器评估函数, 用于具体决策最优的那个落地点, 以及行动路线.

    function AIStrategy() {
      this.generator = new MoveGenerator();
      this.evalutor = new PierreDellacherieEvaluator();
    } /*
* @brief 作出最优的策略
* @return {dest:{x:{x}, y:{y}, idx:{idx}}, [{action_list}]}
*/
AIStrategy.prototype.makeBestDecision = function(tetrisUnit, shape) { var bestMove = null;
var bestScore = -1000000; // 1) 生成所有可行的落点, 以及对应的路径线路
var allMoves = this.generator.generate(tetrisUnit, shape); // 2) 遍历每个可行的落点, 选取最优的局面落点
for ( var i = 0; i < allMoves.length; i++ ) {
var step = allMoves[i].last; var shapeArrs = shape.shapes;
var bkBoards = tetrisUnit.applyAction2Data(step.x, step.y, shapeArrs[step.idx]); // 2.1) 对每个潜在局面进行评估
var tscore = this.evalutor.evaluate(bkBoards, {x:step.x, y:step.y, shapeArr:shapeArrs[step.idx]}); // 2.2) 选取更新最好的落点和路径线路
if ( bestMove === null || tscore > bestScore ) {
bestScore = tscore;
bestMove = allMoves[i].moves;
}
} // 3) 返回最优可行落点, 及其路径线路
return {score:bestScore, action_moves:bestMove}; }

  注: 该代码注释, 诠释了决策函数的整个流程.

效果评估:
  该AI算法的效果不错, 在演示模式下, 跑了一晚上, 依旧好好的活着. 这也满足了之前想要的需求和功能.

总结:
  该算法的权重系数采用了经验值. 当然了, 也可以借助模拟退火算法来学习参数, 不过由于游戏本身的不确定性/偶然性影响, 收敛的效果并非如预期那么好. 有机会再讲讲.
  无论怎么样, 该AI可以扮演一个合格的"麻烦制造者", 让游戏充满趣味和挑战性. 勿忘初心, let's go!!!

写在最后:
  
如果你觉得这篇文章对你有帮助, 请小小打赏下. 其实我想试试, 看看写博客能否给自己带来一点小小的收益. 无论多少, 都是对楼主一种由衷的肯定.

  H5版俄罗斯方块(3)---游戏的AI算法

上一篇:H5版俄罗斯方块(4)---火拼对战的雏形


下一篇:Android版俄罗斯方块的实现