1. 为什么要使用 kafka,为什么要使用消息队列
缓冲和削峰:上游数据时有突发流量,下游可能扛不住,或者下游没有足够多的机器来保证冗余,kafka在中间可以起到一个缓冲的作用,把消息暂存在kafka中,下游服务就可以按照自己的节奏进行慢慢处理。
解耦和扩展性:项目开始的时候,并不能确定具体需求。消息队列可以作为一个接口层,解耦重要的业务流程。只需要遵守约定,针对数据编程即可获取扩展能力。
冗余:可以采用一对多的方式,一个生产者发布消息,可以被多个订阅topic的服务消费到,供多个毫无关联的业务使用。
健壮性:消息队列可以堆积请求,所以消费端业务即使短时间死掉,也不会影响主要业务的正常进行。
异步通信:很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
2. Kafka中的ISR、AR又代表什么?ISR的伸缩又指什么
ISR:In-Sync Replicas 副本同步队列
AR:Assigned Replicas 所有副本
ISR是由leader维护,follower从leader同步数据有一些延迟(包括延迟时间replica.lag.time.max.ms和延迟条数replica.lag.max.messages两个维度, 当前最新的版本0.10.x中只支持replica.lag.time.max.ms这个维度),任意一个超过阈值都会把follower剔除出ISR, 存入OSR(Outof-Sync Replicas)列表,新加入的follower也会先存放在OSR中。AR=ISR+OSR。
3. kafka中的broker 是干什么的
broker 是消息的代理,Producers往Brokers里面的指定Topic中写消息,Consumers从Brokers里面拉取指定Topic的消息,然后进行业务处理,broker在中间起到一个代理保存消息的中转站。
4. broker 是消息的代理,Producers往Brokers里面的指定Topic中写消息,Consumers从Brokers里面拉取指定Topic的消息,然后进行业务处理,broker在中间起到一个代理保存消息的中转站。
5. kafka中的 zookeeper 起到什么作用,可以不用zookeeper么
zookeeper 是一个分布式的协调组件,早期版本的kafka用zk做meta信息存储,consumer的消费状态,group的管理以及 offset的值。考虑到zk本身的一些因素以及整个架构较大概率存在单点问题,新版本中逐渐弱化了zookeeper的作用。新的consumer使用了kafka内部的group coordination协议,也减少了对zookeeper的依赖,但是broker依然依赖于ZK,zookeeper 在kafka中还用来选举controller 和 检测broker是否存活等等。
6. kafka follower如何与leader同步数据
Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。完全同步复制要求All Alive Follower都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,Follower异步的从Leader复制数据,数据只要被Leader写入log就被认为已经commit,这种情况下,如果leader挂掉,会丢失数据,kafka使用ISR的方式很好的均衡了确保数据不丢失以及吞吐率。Follower可以批量的从Leader复制数据,而且Leader充分利用磁盘顺序读以及send file(zero copy)机制,这样极大的提高复制性能,内部批量写磁盘,大幅减少了Follower与Leader的消息量差。
7. 什么情况下一个 broker 会从 isr中踢出去
leader会维护一个与其基本保持同步的Replica列表,该列表称为ISR(in-sync Replica),每个Partition都会有一个ISR,而且是由leader动态维护 ,如果一个follower比一个leader落后太多,或者超过一定时间未发起数据复制请求,则leader将其重ISR中移除
8. kafka 为什么那么快
Cache Filesystem Cache PageCache缓存
顺序写 由于现代的操作系统提供了预读和写技术,磁盘的顺序写大多数情况下比随机写内存还要快。
Zero-copy 零拷技术减少拷贝次数
Batching of Messages 批量量处理。合并小的请求,然后以流的方式进行交互,直顶网络上限。
Pull 拉模式 使用拉模式进行消息的获取消费,与消费端处理能力相符。
9. kafka producer如何优化打入速度
增加线程
提高 batch.size
增加更多 producer 实例
增加 partition 数
设置 acks=-1 时,如果延迟增大:可以增大 num.replica.fetchers(follower 同步数据的线程数)来调解;
跨数据中心的传输:增加 socket 缓冲区设置以及 OS tcp 缓冲区设置。
10. kafka producer 打数据,ack 为 0, 1, -1 的时候代表啥, 设置 -1 的时候,什么情况下,leader 会认为一条消息 commit了
1(默认) 数据发送到Kafka后,经过leader成功接收消息的的确认,就算是发送成功了。在这种情况下,如果leader宕机了,则会丢失数据。
0 生产者将数据发送出去就不管了,不去等待任何返回。这种情况下数据传输效率最高,但是数据可靠性确是最低的。
-1 producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成,可靠性最高。当ISR中所有Replica都向Leader发送ACK时,leader才commit,这时候producer才能认为一个请求中的消息都commit了。
11. 如果leader crash时,ISR为空怎么办
kafka在Broker端提供了一个配置参数:unclean.leader.election,这个参数有两个值:
true(默认):允许不同步副本成为leader,由于不同步副本的消息较为滞后,此时成为leader,可能会出现消息不一致的情况。
false:不允许不同步副本成为leader,此时如果发生ISR列表为空,会一直等待旧leader恢复,降低了可用性。
12. kafka中consumer group 是什么概念
同一个topic的数据,会广播给不同的group;同一个group中的worker,只有一个worker能拿到这个数据。换句话说,对于同一个topic,每个group都可以拿到同样的所有数据,但是数据进入group后只能被其中的一个worker消费。group内的worker可以使用多线程或多进程来实现,也可以将进程分散在多台机器上,worker的数量通常不超过partition的数量,且二者最好保持整数倍关系,因为Kafka在设计时假定了一个partition只能被一个worker消费(同一group内)。
13. Kafka中的消息是否会丢失和重复消费?
消息发送
Kafka消息发送有两种方式:同步(sync)和异步(async),默认是同步方式,可通过producer.type属性进行配置。Kafka通过配置request.required.acks属性来确认消息的生产:
0---表示不进行消息接收是否成功的确认;
1---表示当Leader接收成功时确认;
-1---表示Leader和Follower都接收成功时确认;
综上所述,有6种消息生产的情况,下面分情况来分析消息丢失的场景:
(1)acks=0,不和Kafka集群进行消息接收确认,则当网络异常、缓冲区满了等情况时,消息可能丢失;
(2)acks=1、同步模式下,只有Leader确认接收成功后但挂掉了,副本没有同步,数据可能丢失;
消息消费
Kafka消息消费有两个consumer接口,Low-level API和High-level API:
Low-level API:消费者自己维护offset等值,可以实现对Kafka的完全控制;
High-level API:封装了对parition和offset的管理,使用简单;
如果使用高级接口High-level API,可能存在一个问题就是当消息消费者从集群中把消息取出来、并提交了新的消息offset值后,还没来得及消费就挂掉了,那么下次再消费时之前没消费成功的消息就“诡异”的消失了;
解决办法:
针对消息丢失:同步模式下,确认机制设置为-1,即让消息写入Leader和Follower之后再确认消息发送成功;异步模式下,为防止缓冲区满,可以在配置文件设置不限制阻塞超时时间,当缓冲区满时让生产者一直处于阻塞状态;
针对消息重复:将消息的唯一标识保存到外部介质中,每次消费时判断是否处理过即可。
14. 为什么Kafka不支持读写分离
Leader/Follower 模型并没有规定 Follower 副本不可以对外提供读服务。很多框架都是允 许这么做的,只是 Kafka 最初为了避免不一致性的问题,而采用了让 Leader 统一提供服 务的方式。
在 Kafka 中,生产者写入消息、消费者读取消息的操作都是与 leader 副本进行交互的,从 而实现的是一种主写主读的生产消费模型。
Kafka 并不支持主写从读,因为主写从读有 2 个很明 显的缺点:
(1)数据一致性问题。数据从主节点转到从节点必然会有一个延时的时间窗口,这个时间 窗口会导致主从节点之间的数据不一致。某一时刻,在主节点和从节点中 A 数据的值都为 X, 之后将主节点中 A 的值修改为 Y,那么在这个变更通知到从节点之前,应用读取从节点中的 A 数据的值并不为最新的 Y,由此便产生了数据不一致的问题。
(2)延时问题。类似 Redis 这种组件,数据从写入主节点到同步至从节点中的过程需要经 历网络→主节点内存→网络→从节点内存这几个阶段,整个过程会耗费一定的时间。而在 Kafka 中,主从同步会比 Redis 更加耗时,它需要经历网络→主节点内存→主节点磁盘→网络→从节 点内存→从节点磁盘这几个阶段。对延时敏感的应用而言,主写从读的功能并不太适用。
- 场景不适用。读写分离适用于那种读负载很大,而写操作相对不频繁的场景,可 Kafka 不属于这样的场景。
- 同步机制。Kafka 采用 PULL 方式实现 Follower 的同步,因此,Follower 与 Leader 存 在不一致性窗口。如果允许读 Follower 副本,就势必要处理消息滞后(Lagging)的问题。
15.Kafka中是怎么体现消息顺序性的?
kafka每个partition中的消息在写入时都是有序的,消费时,每个partition只能被每一个group中的一个消费者消费,保证了消费时也是有序的。
整个topic不保证有序。如果为了保证topic整个有序,那么将partition调整为1.
16. Kafka 中位移(offset)的作用,消费者提交消费位移时提交的是当前消费到的最新消息的offset还是offset+1?
offset+1
17. kafka如何实现延迟队列?
Kafka并没有使用JDK自带的Timer或者DelayQueue来实现延迟的功能,而是基于时间轮自定义了一个用于实现延迟功能的定时器(SystemTimer)。JDK的Timer和DelayQueue插入和删除操作的平均时间复杂度为O(nlog(n)),并不能满足Kafka的高性能要求,而基于时间轮可以将插入和删除操作的时间复杂度都降为O(1)。时间轮的应用并非Kafka独有,其应用场景还有很多,在Netty、Akka、Quartz、Zookeeper等组件中都存在时间轮的踪影。
底层使用数组实现,数组中的每个元素可以存放一个TimerTaskList对象。TimerTaskList是一个环形双向链表,在其中的链表项TimerTaskEntry中封装了真正的定时任务TimerTask.
Kafka中到底是怎么推进时间的呢?Kafka中的定时器借助了JDK中的DelayQueue来协助推进时间轮。具体做法是对于每个使用到的TimerTaskList都会加入到DelayQueue中。Kafka中的TimingWheel专门用来执行插入和删除TimerTaskEntry的操作,而DelayQueue专门负责时间推进的任务。再试想一下,DelayQueue中的第一个超时任务列表的expiration为200ms,第二个超时任务为840ms,这里获取DelayQueue的队头只需要O(1)的时间复杂度。如果采用每秒定时推进,那么获取到第一个超时的任务列表时执行的200次推进中有199次属于“空推进”,而获取到第二个超时任务时有需要执行639次“空推进”,这样会无故空耗机器的性能资源,这里采用DelayQueue来辅助以少量空间换时间,从而做到了“精准推进”。Kafka中的定时器真可谓是“知人善用”,用TimingWheel做最擅长的任务添加和删除操作,而用DelayQueue做最擅长的时间推进工作,相辅相成。
18. Kafka中的事务是怎么实现的?
19. Kafka中有那些地方需要选举?这些地方的选举策略又有哪些?
当前,Kafka 有 4 种分区 Leader 选举策略。
- OfflinePartition Leader 选举:每当有分区上线时,就需要执行 Leader 选举。所谓的分区上线,可能是创建了新分区,也可能是之前的下线分区重新上线。这是最常见的分区 Leader 选举场景。
- ReassignPartition Leader 选举:当你手动运行 kafka-reassign-partitions 命令,或者是调用 Admin 的 alterPartitionReassignments 方法执行分区副本重分配时,可能触发此类选举。假设原来的 AR 是[1,2,3],Leader 是 1,当执行副本重分配后,副本集 合 AR 被设置成[4,5,6],显然,Leader 必须要变更,此时会发生 Reassign Partition Leader 选举。
- PreferredReplicaPartition Leader 选举:当你手动运行 kafka-preferred-replica- election 命令,或自动触发了 Preferred Leader 选举时,该类策略被激活。所谓的 Preferred Leader,指的是 AR 中的第一个副本。比如 AR 是[3,2,1],那么, Preferred Leader 就是 3。
- ControlledShutdownPartition Leader 选举:当 Broker 正常关闭时,该 Broker 上 的所有 Leader 副本都会下线,因此,需要为受影响的分区执行相应的 Leader 选举。
20. Kafka 中的领导者副本(Leader Replica)和追随者副本 (Follower Replica)的区别
- Broker 端参数:message.max.bytes、max.message.bytes(主题级别)和 replica.fetch.max.bytes。
- Consumer 端参数:fetch.message.max.bytes。
22. 监控 Kafka 的框架
- Kafka Manager:应该算是最有名的专属 Kafka 监控框架了,是独立的监控系统。
- Kafka Monitor:LinkedIn 开源的免费框架,支持对集群进行系统测试,并实时监控测
试结果。
- 对于设置了 Key 且参数 cleanup.policy=compact 的主题而言,我们可以构造一条 <Key,null> 的消息发送给 Broker,依靠 Log Cleaner 组件提供的功能删除掉该 Key 的消息。
- 对于普通主题而言,我们可以使用 kafka-delete-records 命令,或编写程序调用 Admin.deleteRecords 方法来删除消息。这两种方法殊途同归,底层都是调用 Admin 的 deleteRecords 方法,通过将分区 Log Start Offset 值抬高的方式间接删除消息。
27. Kafka 的哪些场景中使用了零拷贝
体现 Zero Copy 使用场景的地方有两处:基于 mmap 的索引和日志文件读写所用的 TransportLayer
先说第一个。索引都是基于 MappedByteBuffer 的,也就是让用户态和内核态共享内核态 的数据缓冲区,此时,数据不需要复制到用户态空间。不过,mmap 虽然避免了不必要的 拷贝,但不一定就能保证很高的性能。在不同的操作系统下,mmap 的创建和销毁成本可 能是不一样的。很高的创建和销毁开销会抵消 Zero Copy 带来的性能优势。由于这种不确 定性,在 Kafka 中,只有索引应用了 mmap,最核心的日志并未使用 mmap 机制。
再说第二个。TransportLayer 是 Kafka 传输层的接口。它的某个实现类使用了 FileChannel 的 transferTo 方法。该方法底层使用 sendfile 实现了 Zero Copy。对 Kafka 而言,如果 I/O 通道使用普通的 PLAINTEXT,那么,Kafka 就可以利用 Zero Copy 特 性,直接将页缓存中的数据发送到网卡的 Buffer 中,避免中间的多次拷贝。相反,如果 I/O 通道启用了 SSL,那么,Kafka 便无法利用 Zero Copy 特性了。
- LEO:Log End Offset。日志末端位移值或末端偏移量,表示日志下一条待插入消息的 位移值。举个例子,如果日志有 10 条消息,位移值从 0 开始,那么,第 10 条消息的位 移值就是 9。此时,LEO = 10。
- LSO:Log Stable Offset。这是 Kafka 事务的概念。如果你没有使用到事务,那么这个 值不存在(其实也不是不存在,只是设置成一个无意义的值)。该值控制了事务型消费 者能够看到的消息范围。它经常与 Log Start Offset,即日志起始位移值相混淆,因为 有些人将后者缩写成 LSO,这是不对的。在 Kafka 中,LSO 就是指代 Log Stable Offset。
- AR:Assigned Replicas。AR 是主题被创建后,分区创建时被分配的副本集合,副本个 数由副本因子决定。
- ISR:In-Sync Replicas。Kafka 中特别重要的概念,指代的是 AR 中那些与 Leader 保 持同步的副本集合。在 AR 中的副本可能不在 ISR 中,但 Leader 副本天然就包含在 ISR 中。关于 ISR,还有一个常见的面试题目是如何判断副本是否应该属于 ISR。目前的判断 依据是:Follower 副本的 LEO 落后 Leader LEO 的时间,是否超过了 Broker 端参数 replica.lag.time.max.ms 值。如果超过了,副本就会被从 ISR 中移除。
- HW:高水位值(High watermark)。这是控制消费者可读取消息范围的重要字段。一 个普通消费者只能“看到”Leader 副本上介于 Log Start Offset 和 HW(不含)之间的 所有消息。水位以上的消息是对消费者不可见的。
首先,Follower 发送 FETCH 请求给 Leader。接着,Leader 会读取底层日志文件中的消 息数据,再更新它内存中的 Follower 副本的 LEO 值,更新为 FETCH 请求中的 fetchOffset 值。最后,尝试更新分区高水位值。Follower 接收到 FETCH 响应之后,会把 消息写入到底层日志,接着更新 LEO 和 HW 值。
Leader 和 Follower 的 HW 值更新时机是不同的,Follower 的 HW 更新永远落后于 Leader 的 HW。这种时间上的错配是造成各种不一致的原因。