[源码解析] 并行分布式任务队列 Celery 之 Task是什么

[源码解析] 并行分布式任务队列 Celery 之 Task是什么

0x00 摘要

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。本文目的是看看 Celery 的 task 究竟是什么,以及 如果我们想从无到有实现一个 task 机制,有哪些地方需要注意,应该如何处理。

因为 task 和 Consumer 消费密切相关,为了更好的说明,故本文与上文有部分重复,请谅解。

0x01 思考出发点

我们可以大致想想需要一些问题,也就是我们下面剖析的出发点和留意点。

  • task 究竟是什么?
  • task 有什么分类?
  • 有没有内置的 task?
  • task 如何注册到系统中?
  • 用户自定义的 task 如何注册到系统中?

我们在下面会逐一回答这些问题。

0x02 示例代码

示例代码服务端如下,这里使用了装饰器来包装待执行任务。

Task就是用户自定义的业务代码,这里的 task 就是一个加法功能。

from celery import Celery

app = Celery('myTest', broker='redis://localhost:6379')

@app.task
def add(x,y):
print(x+y)
return x+y if __name__ == '__main__':
app.worker_main(argv=['worker'])

发送代码如下:

from myTest import add
re = add.apply_async((2,17))

0x03 任务是什么

为了了解 task 是什么,我们首先打印出运行变量看看,这里选取了主要成员变量:

self = {add} <@task: myTest.add of myTest at 0x7faf35f0a208>
Request = {str} 'celery.worker.request:Request'
Strategy = {str} 'celery.worker.strategy:default'
app = {Celery} <Celery myTest at 0x7faf35f0a208>
backend = {DisabledBackend} <celery.backends.base.DisabledBackend object at 0x7faf364aea20>
from_config = {tuple: 9} (('serializer', 'task_serializer'), ('rate_limit', 'task_default_rate_limit'), ('priority', 'task_default_priority'), ('track_started', 'task_track_started'), ('acks_late', 'task_acks_late'), ('acks_on_failure_or_timeout', 'task_acks_on_failure_or_timeout'), ('reject_on_worker_lost', 'task_reject_on_worker_lost'), ('ignore_result', 'task_ignore_result'), ('store_errors_even_if_ignored', 'task_store_errors_even_if_ignored'))
name = {str} 'myTest.add'
priority = {NoneType} None
request = {Context} <Context: {}>
request_stack = {_LocalStack: 0} <celery.utils.threads._LocalStack object at 0x7faf36405e48>
serializer = {str} 'json'

可以看出来,'myTest.add' 是一个Task变量。

于是我们需要看看Task 是什么。Task 的实现在 Celery 中你会发现有两处,

  • 一处位于 celery/app/task.py

  • 第二个位于 celery/task/base.py 中;

他们之间是有关系的,你可以认为第一个是对外暴露的接口,而第二个是具体的实现。

0x04 Celery应用与任务

任务是 Celery 里不可缺少的一部分,它可以是任何可调用对象。每一个任务通过一个唯一的名称进行标识, worker 通过这个名称对任务进行检索。任务可以通过 app.task 装饰器进行注册,需要注意的一点是,当函数有多个装饰器时,为了保证 Celery 的正常运行,app.task 装饰器需要在最外层。

Task 承载的功能就是在 Celery 应用中,启动对应的消息消费者。

任务最基本的形式就是函数,任务发布最直接的想法就是client将要执行的相关函数代码打包,发布到broker。分布式计算框架 spark 就是使用这种方式(Spark的思想比较简单:挪计算不挪数据)。2.0之前的celery也支持这种任务发布的方式。

这种方式显而易见的一个坏处是传递给broker的数据量可能会比较大。解决的办法也很容易想到,就是把要发布的任务相关的代码,提前告诉worker这就是 全局集合 和 注解注册的作用

当采用 "提前告诉 worker 我们自定义的 task" 时候,定义 task 的方法如下:

@app.task(name='hello_task')
def hello():
print('hello')

其中的app是worker中的application,通过装饰器的方式,对任务函数注册。

app会维护一个字典,key是任务的名字,也就是这里的hello_task,value是这个函数的内存地址。任务名必须唯一,但是任务名这个参数不是必须的,如果没有给这个参数,celery会自动根据包的路径和函数名生成一个任务名。

通过上面这种方式,client发布任务只需要提供任务名以及相关参数,不必提供任务相关代码:

# client端
app.send_task('hello_task')

这里需要注意:client发布任务后,任务会以一个消息的形式写入broker队列,带有任务名称等相关参数,等待worker获取。这里任务的发布,是完全独立于worker端的,即使worker没有启动,消息也会被写入队列。

这种方式也有显而易见的坏处,所有要执行的任务代码都需要提前在worker端注册好,client端和worker端的耦合变强了。

因此,我们需要从 Celery 应用启动时候开始看。

4.1 全局回调集合 和 内置任务

Celery 启动首先就是来到 celery/_state.py

这里建立了一个 全局 set,用来收集所有的 任务 tasks

#: Global set of functions to call whenever a new app is finalized.
#: Shared tasks, and built-in tasks are created by adding callbacks here.
_on_app_finalizers = set()

在启动时候,系统通过调用如下函数来添加 任务。

def connect_on_app_finalize(callback):
"""Connect callback to be called when any app is finalized."""
_on_app_finalizers.add(callback)
return callback

首先,celery/app/builtins.py 就定义了很多内置任务,需要一一添加到全局回调集合中。

@connect_on_app_finalize
def add_map_task(app):
from celery.canvas import signature @app.task(name='celery.map', shared=False, lazy=False)
def xmap(task, it):
task = signature(task, app=app).type
return [task(item) for item in it]
return xmap

其次,系统流程会来到我们的自定义task,把这个 task 注册到全局回调集合中。

即,可以这么理解:Celery 启动之后,会查找代码中,哪些类或者函数使用了 @task注解,然后就把这些 类或者函数注册到全局回调集合中

@app.task
def add(x,y):
print(x+y)
return x+y

4.2 装饰器@app.task

我们顺着 @app.task 来到了 Celery 应用本身。

代码位于:celery/app/base.py。

@app.task 的作用是返回 _create_task_cls 来构建一个task proxy,然后加入 应用待处理队列 pending,并且利用connect_on_app_finalize(cons) 加入全局回调集合

_create_task_cls = {function} <function Celery.task.<locals>.inner_create_task_cls.<locals>._create_task_cls at 0x7ff1a7b118c8>

具体代码如下:

def task(self, *args, **opts):
if USING_EXECV and opts.get('lazy', True):
from . import shared_task
return shared_task(*args, lazy=False, **opts) def inner_create_task_cls(shared=True, filter=None, lazy=True, **opts):
_filt = filter def _create_task_cls(fun):
if shared:
def cons(app):
return app._task_from_fun(fun, **opts)
cons.__name__ = fun.__name__
connect_on_app_finalize(cons) # 这里是重点,加入全局回调集合
if not lazy or self.finalized:
ret = self._task_from_fun(fun, **opts)
else:
# return a proxy object that evaluates on first use
ret = PromiseProxy(self._task_from_fun, (fun,), opts,
__doc__=fun.__doc__)
self._pending.append(ret) # 加入应用pending
if _filt:
return _filt(ret)
return ret return _create_task_cls if len(args) == 1:
if callable(args[0]):
return inner_create_task_cls(**opts)(*args) return inner_create_task_cls(**opts)

4.2.1 建立 Proxy 实例

按照示例中的调用,Celery 返回了Proxy的实例,传入参数就是task_by_cons。

此时查看一下Proxy类的实现,该类位于celery/local.py中。

class Proxy(object):
"""Proxy to another object.""" # Code stolen from werkzeug.local.Proxy.
__slots__ = ('__local', '__args', '__kwargs', '__dict__') def __init__(self, local,
args=None, kwargs=None, name=None, __doc__=None):
object.__setattr__(self, '_Proxy__local', local) # 将传入参数local设置到_Proxy__local属性中
object.__setattr__(self, '_Proxy__args', args or ()) # 设置列表属性
object.__setattr__(self, '_Proxy__kwargs', kwargs or {}) # 设置键值属性
if name is not None:
object.__setattr__(self, '__custom_name__', name)
if __doc__ is not None:
object.__setattr__(self, '__doc__', __doc__)
...
def _get_current_object(self):
"""Get current object. This is useful if you want the real
object behind the proxy at a time for performance reasons or because
you want to pass the object into a different context.
"""
loc = object.__getattribute__(self, '_Proxy__local') # 获取初始化传入的local
if not hasattr(loc, '__release_local__'): # 如果没有__release_local__属性
return loc(*self.__args, **self.__kwargs) # 函数调用,将初始化的值传入调用该函数
try: # pragma: no cover
# not sure what this is about
return getattr(loc, self.__name__) # 获取当前__name__属性值
except AttributeError: # pragma: no cover
raise RuntimeError('no object bound to {0.__name__}'.format(self))
...
def __getattr__(self, name):
if name == '__members__':
return dir(self._get_current_object())
return getattr(self._get_current_object(), name) # 获取obj的属性 def __setitem__(self, key, value):
self._get_current_object()[key] = value # 设置key val def __delitem__(self, key):
del self._get_current_object()[key] # 删除对应key def __setslice__(self, i, j, seq):
self._get_current_object()[i:j] = seq # 列表操作 def __delslice__(self, i, j):
del self._get_current_object()[i:j] def __setattr__(self, name, value):
setattr(self._get_current_object(), name, value) # 设置属性 def __delattr__(self, name):
delattr(self._get_current_object(), name) # 删除对应属性

我们只展示了部分属性,分析如上,主要是根据传入的是否local是否是函数,或者包含release_local来判断是否是调用函数,或是获取属性来处理

4.2.2 添加待处理

上面代码中,如下会把 task 添加到 Celery 应用的 pending queue。

self._pending.append(ret)

_pending定义如下,就是一个 deque:

class Celery:
"""Celery application.
""" def __init__(self, main=None, loader=None, backend=None,
amqp=None, events=None, log=None, control=None,
set_as_current=True, tasks=None, broker=None, include=None,
changes=None, config_source=None, fixups=None, task_cls=None,
autofinalize=True, namespace=None, strict_typing=True,
**kwargs): self._pending = deque()

此时全局集合如下:

_on_app_finalizers = {set: 10}
{function} <function add_chunk_task at 0x7fc200a81400>
{function} <function add_backend_cleanup_task at 0x7fc200a81048>
{function} <function add_starmap_task at 0x7fc200a81488>
{function} <function add_group_task at 0x7fc200a812f0>
{function} <function add_map_task at 0x7fc200a81510>
{function} <function Celery.task.<locals>.inner_create_task_cls.<locals>._create_task_cls.<locals>.cons at 0x7fc200af4510>
{function} <function add_accumulate_task at 0x7fc200aa0158>
{function} <function add_chain_task at 0x7fc200a81378>
{function} <function add_unlock_chord_task at 0x7fc200a81598>
{function} <function add_chord_task at 0x7fc200aa01e0>

具体逻辑如图:

                           +------------------------------+
| _on_app_finalizers = set() |
| |
+--------------+---------------+
|
connect_on_app_finalize |
+------------+ |
| builtins.py| +-----------------------> |
+------------+ |
|
connect_on_app_finalize |
+-------------+ |
|User Function| +----------------------> |
+-------------+ |
v +----------------------------------------------------------------------------------------------------+
| _on_app_finalizers |
| |
| |
| ^function add_chunk_task> |
| <function add_backend_cleanup_task> |
| <function add_starmap_task> |
| <function add_group_task> |
| <function add_map_task^ |
| <function Celery.task.vlocals^.inner_create_task_cls.<locals>._create_task_cls.<locals>.cons> |
| <function add_accumulate_taskv |
| <function add_chain_task> |
| <function add_unlock_chord_task> |
| vfunction add_chord_task> |
| |
+----------------------------------------------------------------------------------------------------+

至此,得倒了一个 全局 set :_on_app_finalizers,用来收集所有的 任务 tasks。

手机上如图:

[源码解析] 并行分布式任务队列 Celery 之 Task是什么

4.3 Celery Worker 启动

目前 Celery 知道了有哪些 task,并且把它们收集起来,但是还不知道它们的逻辑意义。或者可以这么认为,Celery 只是知道有哪些类,但是没有这些类的实例。

因为消费 task 是 Celery 的核心功能,所以我们不可避免的要再回顾下 Worker 的启动,但是这里我们注重 worker 之中 与 task 相关的部分。

其实就是处理上面的 全局 set :_on_app_finalizers把这些暂时没有意义的 task 与 Celery 应用关联起来

具体来说,就是:

  • 根据 task 的具体类生成 task 的实例;
  • 把这些具体task 实例与 Celery 联系起来,比如用 task 名字就可以找到具体实例
  • 配合实例的各种属性;

4.3.1 Worker 示例

这里的Worker 就是 Celery 用来消费的 worker 实例

所以,我们直接来到 worker 看看。

代码位于:celery/bin/worker.py

@click.pass_context
@handle_preload_options
def worker(ctx, hostname=None, pool_cls=None, app=None, uid=None, gid=None,
loglevel=None, logfile=None, pidfile=None, statedb=None,
**kwargs):
"""Start worker instance."""
app = ctx.obj.app worker = app.Worker(
hostname=hostname, pool_cls=pool_cls, loglevel=loglevel,
logfile=logfile, # node format handled by celery.app.log.setup
pidfile=node_format(pidfile, hostname),
statedb=node_format(statedb, hostname),
no_color=ctx.obj.no_color,
**kwargs) # 运行到这里 worker.start() return worker.exitcode

4.3.2 WorkController

worker = app.Worker 之中,我们会发现,间接调用到了 WorkerController。

代码运行到这里,位于:celery/worker/worker.py。

这里做了一些初始化工作,我们继续探究。

class WorkController:
"""Unmanaged worker instance.""" def __init__(self, app=None, hostname=None, **kwargs):
self.app = app or self.app
self.hostname = default_nodename(hostname)
self.startup_time = datetime.utcnow()
self.app.loader.init_worker()
self.on_before_init(**kwargs) # 运行到这里

4.3.3 Worker(WorkController)

代码运行到这里,位于:celery/apps/worker.py

这里调用到了 trace.setup_worker_optimizations,这样马上就看到 task 了。

class Worker(WorkController):
"""Worker as a program.""" def on_before_init(self, quiet=False, **kwargs):
self.quiet = quiet
trace.setup_worker_optimizations(self.app, self.hostname)

4.3.4 trace 进入任务联系

代码运行到这里,位于:celery/app/trace.py。

调用到 app.finalize(),目的是启动之前,搞定所有任务

def setup_worker_optimizations(app, hostname=None):
"""Setup worker related optimizations."""
global trace_task_ret hostname = hostname or gethostname() # make sure custom Task.__call__ methods that calls super
# won't mess up the request/task stack.
_install_stack_protection() app.set_default() # evaluate all task classes by finalizing the app.
app.finalize()

4.3.5 把任务和应用关联起来

费了半天劲,我们才来到了关键逻辑。

app.finalize() 会添加任务到 Celery 应用。

即:之前系统把所有的task都收集起来了,得倒了一个全局 set :_on_app_finalizers。但是这个 set 中的task 目前没有逻辑意义,需要和 Celery 应用联系起来才行,所以这里就是要建立关联

堆栈如下:

_task_from_fun, base.py:450
_create_task_cls, base.py:425
add_chunk_task, builtins.py:128
_announce_app_finalized, _state.py:52
finalize, base.py:511
setup_worker_optimizations, trace.py:643
on_before_init, worker.py:90
__init__, worker.py:95
worker, worker.py:326
caller, base.py:132
new_func, decorators.py:21
invoke, core.py:610
invoke, core.py:1066
invoke, core.py:1259
main, core.py:782
start, base.py:358
worker_main, base.py:374

代码如下:

def finalize(self, auto=False):
"""Finalize the app. This loads built-in tasks, evaluates pending task decorators,
reads configuration, etc.
"""
with self._finalize_mutex:
if not self.finalized:
if auto and not self.autofinalize:
raise RuntimeError('Contract breach: app not finalized')
self.finalized = True _announce_app_finalized(self) # 这里是关键,建立关联 pending = self._pending
while pending:
maybe_evaluate(pending.popleft()) for task in self._tasks.values():
task.bind(self) self.on_after_finalize.send(sender=self)
4.3.5.1 添加任务

_announce_app_finalized(self) 函数是为了 : 把全局回调集合 _on_app_finalizers 中的回调函数运行,得到任务的实例,然后就把它们加入到 Celery 的任务列表,用户可以通过 task 名字得到对应的 task 实例

def _announce_app_finalized(app):
callbacks = set(_on_app_finalizers)
for callback in callbacks:
callback(app)

对于我们的用户自定义任务,callback 就是 _create_task_cls,因此就是运行 _create_task_cls 进行添加。

def inner_create_task_cls(shared=True, filter=None, lazy=True, **opts):
_filt = filter def _create_task_cls(fun):
if shared:
def cons(app):
return app._task_from_fun(fun, **opts) cons.__name__ = fun.__name__
connect_on_app_finalize(cons) if not lazy or self.finalized:
ret = self._task_from_fun(fun, **opts) # 这里

于是,在初始化过程中,为每个 app 添加该任务时,会调用到 app._task_from_fun(fun, **options)。

_task_from_fun 之中,使用如下代码把任务添加到 celery 之中。这样就关联起来

self._tasks[task.name] = task

于是 self._tasks就为:

_tasks = {TaskRegistry: 10}
NotRegistered = {type} <class 'celery.exceptions.NotRegistered'>
'celery.starmap' = {xstarmap} <@task: celery.starmap of myTest at 0x25da0ca0d88>
'celery.chord' = {chord} <@task: celery.chord of myTest at 0x25da0ca0d88>
'celery.accumulate' = {accumulate} <@task: celery.accumulate of myTest at 0x25da0ca0d88>
'celery.chunks' = {chunks} <@task: celery.chunks of myTest at 0x25da0ca0d88>
'celery.chord_unlock' = {unlock_chord} <@task: celery.chord_unlock of myTest at 0x25da0ca0d88>
'celery.group' = {group} <@task: celery.group of myTest at 0x25da0ca0d88>
'celery.map' = {xmap} <@task: celery.map of myTest at 0x25da0ca0d88>
'myTest.add' = {add} <@task: myTest.add of myTest at 0x25da0ca0d88>
'celery.backend_cleanup' = {backend_cleanup} <@task: celery.backend_cleanup of myTest at 0x25da0ca0d88>
'celery.chain' = {chain} <@task: celery.chain of myTest at 0x25da0ca0d88>
__len__ = {int} 10

具体代码如下:

def _task_from_fun(self, fun, name=None, base=None, bind=False, **options):
if not self.finalized and not self.autofinalize:
raise RuntimeError('Contract breach: app not finalized')
name = name or self.gen_task_name(fun.__name__, fun.__module__)
base = base or self.Task if name not in self._tasks:
run = fun if bind else staticmethod(fun)
task = type(fun.__name__, (base,), dict({
'app': self,
'name': name,
'run': run,
'_decorated': True,
'__doc__': fun.__doc__,
'__module__': fun.__module__,
'__annotations__': fun.__annotations__,
'__header__': staticmethod(head_from_fun(fun, bound=bind)),
'__wrapped__': run}, **options))() self._tasks[task.name] = task
task.bind(self) # connects task to this app
add_autoretry_behaviour(task, **options)
else:
task = self._tasks[name]
return task
4.3.5.2 bind

其中task在默认情况下是celery.app.task:Task,在动态生成该实例后,调用了task.bind(self)方法,这里就是设置 app 各种属性。

@classmethod
def bind(cls, app):
was_bound, cls.__bound__ = cls.__bound__, True
cls._app = app # 设置类的_app属性
conf = app.conf # 获取app的配置信息
cls._exec_options = None # clear option cache if cls.typing is None:
cls.typing = app.strict_typing for attr_name, config_name in cls.from_config: # 设置类中的默认值
if getattr(cls, attr_name, None) is None: # 如果获取该属性为空
setattr(cls, attr_name, conf[config_name]) # 使用app配置中的默认值 # decorate with annotations from config.
if not was_bound:
cls.annotate() from celery.utils.threads import LocalStack
cls.request_stack = LocalStack() # 使用线程栈保存数据 # PeriodicTask uses this to add itself to the PeriodicTask schedule.
cls.on_bound(app) return app
4.3.5.3 处理 "待处理"

运行回到 Celery,此时代码位于:celery/app/base.py

变量如下:

pending = {deque: 1} deque([<@task: myTest.add of myTest at 0x7fd907623550>])
self = {Celery} <Celery myTest at 0x7fd907623550>

从pending 中提取任务之后,会进行处理。前面我们提到,有一些 task 的待处理工作,就是在这里执行。

代码位于:celery/local.py

def __maybe_evaluate__(self):
return self._get_current_object() def _get_current_object(self):
try:
return object.__getattribute__(self, '__thing')

此时self如下,就是任务本身:

self = {add} <@task: myTest.add of myTest at 0x7fa09ee1e320>

返回就是 myTest.add 任务本身。

4.3.6 多进程 VS Task

目前已经得到了所有的 task,并且每一个task都有自己的实例,可以进行调用。

因为任务消费需要用到多进程,所以我们需要先大致看看多进程如何启动的

让我们继续看看 Celery Worker 的启动。

在 Celery Worker 启动过程中,会启动不同的bootsteps,在 Worker 启动过程中,对应的 steps 为:[<step: Hub>, <step: Pool>, <step: Consumer>]。

start, bootsteps.py:116
start, worker.py:204
worker, worker.py:327
caller, base.py:132
new_func, decorators.py:21
invoke, core.py:610
invoke, core.py:1066
invoke, core.py:1259
main, core.py:782
start, base.py:358
worker_main, base.py:374

代码位于:celery/bootsteps.py

def start(self, parent):
self.state = RUN
if self.on_start:
self.on_start()
for i, step in enumerate(s for s in parent.steps if s is not None):
self.started = i + 1
step.start(parent)

变量为:

parent.steps = {list: 3}
0 = {Hub} <step: Hub>
1 = {Pool} <step: Pool>
2 = {Consumer} <step: Consumer>
__len__ = {int} 3

具体 任务处理的逻辑 启动 就在 Pool 之中。

在 Pool(bootsteps.StartStopStep) 中,如下代码 w.process_task = w._process_task 给具体的 pool 配置了回调方法。 即 当 pool 接到通知,有运行机会时候,他知道用什么回调函数来获取/执行具体的task

class Pool(bootsteps.StartStopStep):
"""Bootstep managing the worker pool. Describes how to initialize the worker pool, and starts and stops
the pool during worker start-up/shutdown. Adds attributes: * autoscale
* pool
* max_concurrency
* min_concurrency
""" def create(self, w): procs = w.min_concurrency w.process_task = w._process_task # 这里配置回调函数

方法如下,可以预计,未来会通过 req.execute_using_pool(self.pool) 这里调用到 多进程

def _process_task(self, req):
"""Process task by sending it to the pool of workers.""" req.execute_using_pool(self.pool)

此时 变量为:

self = {Pool} <step: Pool>
semaphore = {NoneType} None
threaded = {bool} False
w = {Worker} celery

4.3.7 总结

最后得到如下逻辑,这个TaskRegistry 在执行任务会用到

self._tasks = {TaskRegistry: 10}
NotRegistered = {type} <class 'celery.exceptions.NotRegistered'>
'celery.chunks' = {chunks} <@task: celery.chunks of myTest at 0x7fb652da5fd0>
'celery.backend_cleanup' = {backend_cleanup} <@task: celery.backend_cleanup of myTest at 0x7fb652da5fd0>
'celery.chord_unlock' = {unlock_chord} <@task: celery.chord_unlock of myTest at 0x7fb652da5fd0>
'celery.group' = {group} <@task: celery.group of myTest at 0x7fb652da5fd0>
'celery.map' = {xmap} <@task: celery.map of myTest at 0x7fb652da5fd0>
'celery.chain' = {chain} <@task: celery.chain of myTest at 0x7fb652da5fd0>
'celery.starmap' = {xstarmap} <@task: celery.starmap of myTest at 0x7fb652da5fd0>
'celery.chord' = {chord} <@task: celery.chord of myTest at 0x7fb652da5fd0>
'myTest.add' = {add} <@task: myTest.add of myTest at 0x7fb652da5fd0>
'celery.accumulate' = {accumulate} <@task: celery.accumulate of myTest at 0x7fb652da5fd0>
__len__ = {int} 10

图例如下:

                           +------------------------------+
| _on_app_finalizers = set() |
| |
+--------------+---------------+
|
connect_on_app_finalize |
+------------+ |
| builtins.py| +-----------------------> |
+------------+ |
|
connect_on_app_finalize |
+-------------+ |
|User Function| +----------------------> |
+-------------+ |
v +----------------------------------------------------------------------------------------------------+
| _on_app_finalizers |
| |
| |
| ^function add_chunk_task> |
| <function add_backend_cleanup_task> |
| <function add_starmap_task> |
| <function add_group_task> |
| <function add_map_task^ |
| <function Celery.task.vlocals^.inner_create_task_cls.<locals>._create_task_cls.<locals>.cons> |
| <function add_accumulate_taskv |
| <function add_chain_task> |
| <function add_unlock_chord_task> |
| vfunction add_chord_task> |
| |
+----------------------------+-----------------------------------------------------------------------+
|
|
| +--------------------------------------------------------------------------------------------+
finalize v | |
| TaskRegistry |
+---------------------------+ | |
| | | |
| Celery | | |
| | | NotRegistered = {type} <class 'celery.exceptions.NotRegistered'> |
_process_task <-------------------+ process_task| | 'celery.chunks' = {chunks} <@task: celery.chunks of myTest> |
| | | 'celery.backend_cleanup' = {backend_cleanup} <@task: celery.backend_cleanup of myTest > |
| | | 'celery.chord_unlock' = {unlock_chord} <@task: celery.chord_unlock of myTest> |
| _tasks +-------------> | 'celery.group' = {group} <@task: celery.group of myTest> |
| | | 'celery.map' = {xmap} <@task: celery.map of myTest> |
| | | 'celery.chain' = {chain} <@task: celery.chain of myTest> |
+---------------------------+ | 'celery.starmap' = {xstarmap} <@task: celery.starmap of myTest> |
| 'celery.chord' = {chord} <@task: celery.chord of myTest> |
| 'myTest.add' = {add} <@task: myTest.add of myTest> |
| 'celery.accumulate' = {accumulate} <@task: celery.accumulate of myTest> |
| |
+--------------------------------------------------------------------------------------------+

手机如下:

[源码解析] 并行分布式任务队列 Celery 之 Task是什么

或者我们调整 图结构,从另一个角度看看。

            +------------------------------+
| _on_app_finalizers = set() |
| |
+--------------+---------------+
|
|
| connect_on_app_finalize +------------+
| <----------------------------+ | builtins.py|
| +------------+
|
| connect_on_app_finalize
| +-------------+
+ | <---------------------------+ |User Function|
| +-------------+
v +------------------------------------------------------------------------------------------------+
| _on_app_finalizers |
| |
| |
| ^function add_chunk_task> |
| <function add_backend_cleanup_task> |
| <function add_starmap_task> |
| <function add_group_task> |
| <function add_map_task^ |
| <function Celery.task.vlocals^.inner_create_task_cls.<locals>._create_task_cls.<locals>.cons> |
| <function add_accumulate_taskv |
| <function add_chain_task> |
| <function add_unlock_chord_task> |
| vfunction add_chord_task> |
| |
+--------------------------+---------------------------------------------------------------------+
|
|
finalize |
|
|
v
+-------------+-------------+
| |
| Celery |
| |
| _tasks |
| + |
| | |
+---------------------------+
|
|
|
v +--------------------------------------------------------------------------------------------+
| |
| TaskRegistry |
| |
| NotRegistered = {type} <class 'celery.exceptions.NotRegistered'> |
| 'celery.chunks' = {chunks} <@task: celery.chunks of myTest> |
| 'celery.backend_cleanup' = {backend_cleanup} <@task: celery.backend_cleanup of myTest > |
| 'celery.chord_unlock' = {unlock_chord} <@task: celery.chord_unlock of myTest> |
| 'celery.group' = {group} <@task: celery.group of myTest> |
| 'celery.map' = {xmap} <@task: celery.map of myTest> |
| 'celery.chain' = {chain} <@task: celery.chain of myTest> |
| 'celery.starmap' = {xstarmap} <@task: celery.starmap of myTest> |
| 'celery.chord' = {chord} <@task: celery.chord of myTest> |
| 'myTest.add' = {add} <@task: myTest.add of myTest> |
| 'celery.accumulate' = {accumulate} <@task: celery.accumulate of myTest> |
| |
+--------------------------------------------------------------------------------------------+

手机如下:

[源码解析] 并行分布式任务队列 Celery 之 Task是什么

0x05 Task定义

Task 定义的代码位于:celery/app/task.py。

从其成员变量可以清楚的看到大致功能分类如下:

基础信息,比如:

  • 对应的Celery应用;
  • task 名字;
  • 功能类信息;

错误处理信息,比如:

  • 速率控制;
  • 最大重试次数;
  • 重试间隔时间;
  • 重试时候的错误处理;

业务控制,比如:

  • 是否ack late;
  • ack错误处理;
  • 自动注册;
  • 后端存储信息;
  • worker 出错如何处理;

任务控制,比如:

  • 请求stack;
  • 缺省request;
  • 优先级;
  • 失效时间;
  • 执行option;

具体定义如下:

@abstract.CallableTask.register
class Task:
__trace__ = None
__v2_compat__ = False # set by old base in celery.task.base MaxRetriesExceededError = MaxRetriesExceededError
OperationalError = OperationalError Strategy = 'celery.worker.strategy:default'
Request = 'celery.worker.request:Request' _app = None
name = None
typing = None max_retries = 3
default_retry_delay = 3 * 60 rate_limit = None
ignore_result = None trail = True
send_events = True
store_errors_even_if_ignored = None
serializer = None
time_limit = None
soft_time_limit = None backend = None
autoregister = True
track_started = None
acks_late = None
acks_on_failure_or_timeout = None
reject_on_worker_lost = None
throws = () expires = None
priority = None
resultrepr_maxsize = 1024
request_stack = None
_default_request = None
abstract = True
_exec_options = None
__bound__ = False from_config = (
('serializer', 'task_serializer'),
('rate_limit', 'task_default_rate_limit'),
('priority', 'task_default_priority'),
('track_started', 'task_track_started'),
('acks_late', 'task_acks_late'),
('acks_on_failure_or_timeout', 'task_acks_on_failure_or_timeout'),
('reject_on_worker_lost', 'task_reject_on_worker_lost'),
('ignore_result', 'task_ignore_result'),
('store_errors_even_if_ignored', 'task_store_errors_even_if_ignored'),
)
_backend = None # set by backend property.

0x06 consumer

因为 task 是通过 Consumer 来调用,所以我们要看看 Consumer 中关于 task 的部分,就是把 task 和 consumer 联系起来,这样才能够让 Consumer 具体调用到 task

6.1 Consumer steps

Consumer启动时候,也是要运行多个 steps。

parent.steps = {list: 8}
0 = {Connection} <step: Connection>
1 = {Events} <step: Events>
2 = {Heart} <step: Heart>
3 = {Mingle} <step: Mingle>
4 = {Gossip} <step: Gossip>
5 = {Tasks} <step: Tasks>
6 = {Control} <step: Control>
7 = {Evloop} <step: event loop>
__len__ = {int} 8

6.2 Tasks steps

consumer 会启动 Tasks 这个bootsteps,这里会:

  • update_strategies :配置每个任务的回调方法,比如:'celery.chunks' = {function} <function default.<locals>.task_message_handler at 0x7fc5a47d5a60>
  • task_consumer = c.app.amqp.TaskConsumer :这样 task 就和 amqp.Consumer 联系起来
  • 设置 QoS;
  • 设置 预取;

因此,task 的回调就和 amqp.Consumer 联系,消息通路就构建完成

代码位于:celery/worker/consumer/tasks.py

class Tasks(bootsteps.StartStopStep):
"""Bootstep starting the task message consumer.""" requires = (Mingle,) def __init__(self, c, **kwargs):
c.task_consumer = c.qos = None
super().__init__(c, **kwargs) def start(self, c):
"""Start task consumer."""
c.update_strategies() # 配置每个任务的回调方法 # - RabbitMQ 3.3 completely redefines how basic_qos works..
# This will detect if the new qos smenatics is in effect,
# and if so make sure the 'apply_global' flag is set on qos updates.
qos_global = not c.connection.qos_semantics_matches_spec # set initial prefetch count
c.connection.default_channel.basic_qos(
0, c.initial_prefetch_count, qos_global,
) c.task_consumer = c.app.amqp.TaskConsumer(
c.connection, on_decode_error=c.on_decode_error,
) # task 就和 amqp.Consumer 联系起来 def set_prefetch_count(prefetch_count):
return c.task_consumer.qos(
prefetch_count=prefetch_count,
apply_global=qos_global,
)
c.qos = QoS(set_prefetch_count, c.initial_prefetch_count)

5.2.1 策略

关于 task 运行其实是需要一定策略的,这也可以认为是一种负载均衡。其策略如下:

SCHED_STRATEGY_FCFS = 1
SCHED_STRATEGY_FAIR = 4 SCHED_STRATEGIES = {
None: SCHED_STRATEGY_FAIR,
'default': SCHED_STRATEGY_FAIR,
'fast': SCHED_STRATEGY_FCFS,
'fcfs': SCHED_STRATEGY_FCFS,
'fair': SCHED_STRATEGY_FAIR,
}

5.2.2 更新策略

update_strategies 会配置每个任务的回调策略以及回调方法,比如:'celery.chunks' = {function} <function default.<locals>.task_message_handler at 0x7fc5a47d5a60>

堆栈如下:

update_strategies, consumer.py:523
start, tasks.py:26
start, bootsteps.py:116
start, consumer.py:311
start, bootsteps.py:365
start, bootsteps.py:116
start, worker.py:204
worker, worker.py:327
caller, base.py:132
new_func, decorators.py:21
invoke, core.py:610
invoke, core.py:1066
invoke, core.py:1259
main, core.py:782
start, base.py:358
worker_main, base.py:374

代码位于:celery/worker/consumer/consumer.py

def update_strategies(self):
loader = self.app.loader # app的加载器
for name, task in items(self.app.tasks): # 遍历所有的任务
self.strategies[name] = task.start_strategy(self.app, self) # 将task的name设为key 将task start_strategy调用的返回值作为 value
task.__trace__ = build_tracer(name, task, loader, self.hostname,
app=self.app) # 处理相关执行结果的函数

app.tasks变量如下,这就是目前 Celery 注册的所有 tasks:

self.app.tasks = {TaskRegistry: 10}
NotRegistered = {type} <class 'celery.exceptions.NotRegistered'>
'celery.chunks' = {chunks} <@task: celery.chunks of myTest at 0x7fc5a36e8160>
'celery.backend_cleanup' = {backend_cleanup} <@task: celery.backend_cleanup of myTest at 0x7fc5a36e8160>
'celery.chord_unlock' = {unlock_chord} <@task: celery.chord_unlock of myTest at 0x7fc5a36e8160>
'celery.group' = {group} <@task: celery.group of myTest at 0x7fc5a36e8160>
'celery.map' = {xmap} <@task: celery.map of myTest at 0x7fc5a36e8160>
'celery.chain' = {chain} <@task: celery.chain of myTest at 0x7fc5a36e8160>
'celery.starmap' = {xstarmap} <@task: celery.starmap of myTest at 0x7fc5a36e8160>
'celery.chord' = {chord} <@task: celery.chord of myTest at 0x7fc5a36e8160>
'myTest.add' = {add} <@task: myTest.add of myTest at 0x7fc5a36e8160>
'celery.accumulate' = {accumulate} <@task: celery.accumulate of myTest at 0x7fc5a36e8160>
__len__ = {int} 10

此时我们继续查看task.start_strategy函数,

def start_strategy(self, app, consumer, **kwargs):
return instantiate(self.Strategy, self, app, consumer, **kwargs) # 生成task实例

此时self.Strategy的默认值是celery.worker.strategy:default,

def default(task, app, consumer,
info=logger.info, error=logger.error, task_reserved=task_reserved,
to_system_tz=timezone.to_system, bytes=bytes, buffer_t=buffer_t,
proto1_to_proto2=proto1_to_proto2):
"""Default task execution strategy. Note:
Strategies are here as an optimization, so sadly
it's not very easy to override.
"""
hostname = consumer.hostname # 设置相关的消费者信息
connection_errors = consumer.connection_errors # 设置错误值
_does_info = logger.isEnabledFor(logging.INFO) # task event related
# (optimized to avoid calling request.send_event)
eventer = consumer.event_dispatcher
events = eventer and eventer.enabled
send_event = eventer.send
task_sends_events = events and task.send_events call_at = consumer.timer.call_at
apply_eta_task = consumer.apply_eta_task
rate_limits_enabled = not consumer.disable_rate_limits
get_bucket = consumer.task_buckets.__getitem__
handle = consumer.on_task_request
limit_task = consumer._limit_task
body_can_be_buffer = consumer.pool.body_can_be_buffer Req = create_request_cls(Request, task, consumer.pool, hostname, eventer) # 返回一个请求类 revoked_tasks = consumer.controller.state.revoked def task_message_handler(message, body, ack, reject, callbacks,
to_timestamp=to_timestamp):
if body is None:
body, headers, decoded, utc = (
message.body, message.headers, False, True,
)
if not body_can_be_buffer:
body = bytes(body) if isinstance(body, buffer_t) else body
else:
body, headers, decoded, utc = proto1_to_proto2(message, body) # 解析接受的数据 req = Req(
message,
on_ack=ack, on_reject=reject, app=app, hostname=hostname,
eventer=eventer, task=task, connection_errors=connection_errors,
body=body, headers=headers, decoded=decoded, utc=utc,
) # 实例化请求 if (req.expires or req.id in revoked_tasks) and req.revoked():
return if task_sends_events:
send_event(
'task-received',
uuid=req.id, name=req.name,
args=req.argsrepr, kwargs=req.kwargsrepr,
root_id=req.root_id, parent_id=req.parent_id,
retries=req.request_dict.get('retries', 0),
eta=req.eta and req.eta.isoformat(),
expires=req.expires and req.expires.isoformat(),
) # 如果需要发送接受请求则发送 if req.eta: # 时间相关处理
try:
if req.utc:
eta = to_timestamp(to_system_tz(req.eta))
else:
eta = to_timestamp(req.eta, timezone.local)
else:
consumer.qos.increment_eventually()
call_at(eta, apply_eta_task, (req,), priority=6)
else:
if rate_limits_enabled: # 速率限制
bucket = get_bucket(task.name)
if bucket:
return limit_task(req, bucket, 1)
task_reserved(req) #
if callbacks:
[callback(req) for callback in callbacks]
handle(req) # 处理接受的请求 return task_message_handler

此时处理的 handler 就是在 consumer 初始化的时候传入的 w.process_task,

def _process_task(self, req):
"""Process task by sending it to the pool of workers."""
req.execute_using_pool(self.pool)

操作之后,得到了每个task的回调策略,这样当多进程调用时候,就知道如何调用task了,即对于我们目前的各个 task,当从broker 拿到任务消息之后,我们都调用 task_message_handler

strategies = {dict: 10}
'celery.chunks' = {function} <function default.<locals>.task_message_handler at 0x7fc5a47d5a60>
'celery.backend_cleanup' = {function} <function default.<locals>.task_message_handler at 0x7fc5a4878400>
'celery.chord_unlock' = {function} <function default.<locals>.task_message_handler at 0x7fc5a4878598>
'celery.group' = {function} <function default.<locals>.task_message_handler at 0x7fc5a4878840>
'celery.map' = {function} <function default.<locals>.task_message_handler at 0x7fc5a4878ae8>
'celery.chain' = {function} <function default.<locals>.task_message_handler at 0x7fc5a4878d90>
'celery.starmap' = {function} <function default.<locals>.task_message_handler at 0x7fc5a487b0d0>
'celery.chord' = {function} <function default.<locals>.task_message_handler at 0x7fc5a487b378>
'myTest.add' = {function} <function default.<locals>.task_message_handler at 0x7fc5a487b620>
'celery.accumulate' = {function} <function default.<locals>.task_message_handler at 0x7fc5a487b8c8>
__len__ = {int} 10

5.2.3 Request

celery.worker.strategy:default 之中,这部分代码需要看看:

Req = create_request_cls(Request, task, consumer.pool, hostname, eventer)  # 返回一个请求类

Strategy 中,以下目的是为了 根据 task 实例 构建一个 Request,从而把 broker 消息,consumer,多进程都联系起来。

具体可以看到 Request. execute_using_pool 这里就会和多进程处理开始关联,比如和 comsumer 的 pool 进程池联系起来。

Req = create_request_cls(Request, task, consumer.pool, hostname, eventer)

task 实例为:

myTest.add[863cf9b2-8440-4ea2-8ac4-06b3dcd2fd1f]

获得Requst代码为:

def create_request_cls(base, task, pool, hostname, eventer,
ref=ref, revoked_tasks=revoked_tasks,
task_ready=task_ready, trace=trace_task_ret):
default_time_limit = task.time_limit
default_soft_time_limit = task.soft_time_limit
apply_async = pool.apply_async
acks_late = task.acks_late
events = eventer and eventer.enabled class Request(base): def execute_using_pool(self, pool, **kwargs):
task_id = self.task_id
if (self.expires or task_id in revoked_tasks) and self.revoked():
raise TaskRevokedError(task_id) time_limit, soft_time_limit = self.time_limits
result = apply_async(
trace,
args=(self.type, task_id, self.request_dict, self.body,
self.content_type, self.content_encoding),
accept_callback=self.on_accepted,
timeout_callback=self.on_timeout,
callback=self.on_success,
error_callback=self.on_failure,
soft_timeout=soft_time_limit or default_soft_time_limit,
timeout=time_limit or default_time_limit,
correlation_id=task_id,
)
# cannot create weakref to None
# pylint: disable=attribute-defined-outside-init
self._apply_result = maybe(ref, result)
return result def on_success(self, failed__retval__runtime, **kwargs):
failed, retval, runtime = failed__retval__runtime
if failed:
if isinstance(retval.exception, (
SystemExit, KeyboardInterrupt)):
raise retval.exception
return self.on_failure(retval, return_ok=True)
task_ready(self) if acks_late:
self.acknowledge() if events:
self.send_event(
'task-succeeded', result=retval, runtime=runtime,
) return Request

5.2.4 如何调用到多进程

前面回调函数 task_message_handler中有 req = Req(...),这就涉及到了如何调用多进程,即 Request 类处理。

def task_message_handler(message, body, ack, reject, callbacks,
to_timestamp=to_timestamp): req = Req(
message,
on_ack=ack, on_reject=reject, app=app, hostname=hostname,
eventer=eventer, task=task, connection_errors=connection_errors,
body=body, headers=headers, decoded=decoded, utc=utc,
) # 实例化请求 if req.eta: # 时间相关
else:
task_reserved(req) #
if callbacks:
[callback(req) for callback in callbacks]
handle(req) # 处理接受的请求 return task_message_handler

注意:

此时处理的 handle(req) 的 handle函数 就是在 consumer 初始化的时候传入的 w.process_task,

def _process_task(self, req):
"""Process task by sending it to the pool of workers."""
req.execute_using_pool(self.pool)

所以,handle(req) 实际上就是调用 Request 的 execute_using_pool 函数,就来到了多进程。

代码为:

class Request(base):

    def execute_using_pool(self, pool, **kwargs):
task_id = self.task_id# 获取任务id
if (self.expires or task_id in revoked_tasks) and self.revoked():# 检查是否过期或者是否已经执行过
raise TaskRevokedError(task_id) time_limit, soft_time_limit = self.time_limits# 获取时间
result = apply_async(# 执行对应的func并返回结果
trace,
args=(self.type, task_id, self.request_dict, self.body,
self.content_type, self.content_encoding),
accept_callback=self.on_accepted,
timeout_callback=self.on_timeout,
callback=self.on_success,
error_callback=self.on_failure,
soft_timeout=soft_time_limit or default_soft_time_limit,
timeout=time_limit or default_time_limit,
correlation_id=task_id,
)
# cannot create weakref to None
# pylint: disable=attribute-defined-outside-init
self._apply_result = maybe(ref, result)
return result

5.3 总结

因为信息量太大,所以分为三个图展示。

5.3.1 Strategy

strategy 逻辑为:

                                      +-----------------------+                      +---------------------------+
| Celery | | Consumer |
| | | |
| consumer +---------------------> | | +---------------+
| | | task_consumer +---------------> | amqp.Consumer |
| _tasks | | | +---------------+
| + | | |
| | | | strategies +----------------+
+-----------------------+ | | |
| | | |
| +---------------------------+ |
| v
v
+------------------------------------------------------+-------------------------------------+ +-----------------------------------------------------------------------------+
| | | strategies = {dict: 10} |
| TaskRegistry | | 'celery.chunks' = function default.<locals>.task_message_handler |
| | | 'celery.backend_cleanup' = function default.<locals>.task_message_handler |
| NotRegistered = {type} <class 'celery.exceptions.NotRegistered'> | | 'celery.chord_unlock' = function default.^locals>.task_message_handler |
| 'celery.chunks' = {chunks} <@task: celery.chunks of myTest> | | 'celery.group' = function default.<localsv.task_message_handler |
| 'celery.backend_cleanup' = {backend_cleanup} <@task: celery.backend_cleanup of myTest > | | 'celery.map' = function default.<locals>.task_message_handler |
| 'celery.chord_unlock' = {unlock_chord} <@task: celery.chord_unlock of myTest> | | 'celery.chain' = function default.<locals>.task_message_handler |
| 'celery.group' = {group} <@task: celery.group of myTest> | | 'celery.starmap' = function default.<locals>.task_message_handler |
| 'celery.map' = {xmap} <@task: celery.map of myTest> | | 'celery.chord' = function default.<locals>.task_message_handler |
| 'celery.chain' = {chain} <@task: celery.chain of myTest> | | 'myTest.add' = function default.<locals^.task_message_handler |
| 'celery.starmap' = {xstarmap} <@task: celery.starmap of myTest> | | 'celery.accumulate' = function default.vlocals>.task_message_handler |
| 'celery.chord' = {chord} <@task: celery.chord of myTest> | | |
| 'myTest.add' = {add} <@task: myTest.add of myTest> | +-----------------------------------------------------------------------------+
| 'celery.accumulate' = {accumulate} <@task: celery.accumulate of myTest> |
| |
+--------------------------------------------------------------------------------------------+

手机如下

[源码解析] 并行分布式任务队列 Celery 之 Task是什么

5.3.2 注册 task 逻辑

Celery 应用中注册的task 逻辑为

                           +------------------------------+
| _on_app_finalizers = set() |
| |
+--------------+---------------+
|
connect_on_app_finalize |
+------------+ |
| builtins.py| +-----------------------> |
+------------+ |
|
connect_on_app_finalize |
+-------------+ |
|User Function| +----------------------> |
+-------------+ |
v +----------------------------------------------------------------------------------------------------+
| _on_app_finalizers |
| |
| |
| ^function add_chunk_task> |
| <function add_backend_cleanup_task> |
| <function add_starmap_task> |
| <function add_group_task> |
| <function add_map_task^ |
| <function Celery.task.vlocals^.inner_create_task_cls.<locals>._create_task_cls.<locals>.cons> |
| <function add_accumulate_taskv |
| <function add_chain_task> |
| <function add_unlock_chord_task> |
| vfunction add_chord_task> |
| |
+----------------------------+-----------------------------------------------------------------------+
|
|
| +--------------------------------------------------------------------------------------------+
finalize v | |
| TaskRegistry |
+---------------------------+ | |
| | | |
| Celery | | |
| | | NotRegistered = {type} <class 'celery.exceptions.NotRegistered'> |
_process_task <-------------------+ process_task| | 'celery.chunks' = {chunks} <@task: celery.chunks of myTest> |
| | | 'celery.backend_cleanup' = {backend_cleanup} <@task: celery.backend_cleanup of myTest > |
| | | 'celery.chord_unlock' = {unlock_chord} <@task: celery.chord_unlock of myTest> |
| _tasks +-------------> | 'celery.group' = {group} <@task: celery.group of myTest> |
+---------------+ | | | 'celery.map' = {xmap} <@task: celery.map of myTest> |
| amqp.Consumer | <--------+ task_consumer | | 'celery.chain' = {chain} <@task: celery.chain of myTest> |
+---------------+ | | | 'celery.starmap' = {xstarmap} <@task: celery.starmap of myTest> |
+---------------------------+ | 'celery.chord' = {chord} <@task: celery.chord of myTest> |
| 'myTest.add' = {add} <@task: myTest.add of myTest> |
| 'celery.accumulate' = {accumulate} <@task: celery.accumulate of myTest> |
| |
+--------------------------------------------------------------------------------------------+

手机如下:

[源码解析] 并行分布式任务队列 Celery 之 Task是什么

5.3.3 处理任务逻辑

当从broker获取消息之后,处理任务时候逻辑为:

                         +
Consumer |
message |
v strategy +------------------------------------+
+------------+------+ | strategies |
| on_task_received | <--------+ | |
| | |[myTest.add : task_message_handler] |
+------------+------+ +------------------------------------+
|
|
+------------------------------------------------------------------------------------+
strategy |
|
|
v Request [myTest.add]
+------------+-------------+ +---------------------+
| task_message_handler | <-------------------+ | create_request_cls |
| | | |
+------------+-------------+ +---------------------+
| _process_task_sem
|
+--------------------------------------------------------------------------------------+
Worker | req[{Request} myTest.add]
v
+--------+-----------+
| WorkController |
| |
| pool +-------------------------+
+--------+-----------+ |
| |
| apply_async v
+-----------+----------+ +---+-------+
|{Request} myTest.add | +---------------> | TaskPool |
+----------------------+ +-----------+
myTest.add

手机如下图:

[源码解析] 并行分布式任务队列 Celery 之 Task是什么

至此,Celery启动全部分析结束,我们下一步看看一个完整的例子,即消息如何从发送到被消费的流程。

0xFF 参考

celery源码分析-Task的初始化与发送任务

Celery 源码解析三: Task 对象的实现

Celery-4.1 用户指南: Application(应用)

上一篇:四、Oracle 序列、常用函数、多表连接


下一篇:【GO】GO语言学习笔记四