tensorflow(四十一):LSTM与GRU

一、GRU原理

tensorflow(四十一):LSTM与GRU

 

 二、LSTM_cell实战

import  os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import layers


tf.random.set_seed(22)
np.random.seed(22) 
assert tf.__version__.startswith('2.')

batchsz = 128

# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)

db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)



class MyRNN(keras.Model):

    def __init__(self, units):
        super(MyRNN, self).__init__()

        # [b, 64]
        self.state0 = [tf.zeros([batchsz, units]),tf.zeros([batchsz, units])]
        self.state1 = [tf.zeros([batchsz, units]),tf.zeros([batchsz, units])]

        # transform text to embedding representation
        # [b, 80] => [b, 80, 100]
        self.embedding = layers.Embedding(total_words, embedding_len,
                                          input_length=max_review_len)

        # [b, 80, 100] , h_dim: 64
        # RNN: cell1 ,cell2, cell3
        # SimpleRNN
        # self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)
        # self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
        self.rnn_cell0 = layers.LSTMCell(units, dropout=0.5)
        self.rnn_cell1 = layers.LSTMCell(units, dropout=0.5)


        # fc, [b, 80, 100] => [b, 64] => [b, 1]
        self.outlayer = layers.Dense(1)

    def call(self, inputs, training=None):
        """
        net(x) net(x, training=True) :train mode
        net(x, training=False): test
        :param inputs: [b, 80]
        :param training:
        :return:
        """
        # [b, 80]
        x = inputs
        # embedding: [b, 80] => [b, 80, 100]
        x = self.embedding(x)
        # rnn cell compute
        # [b, 80, 100] => [b, 64]
        state0 = self.state0
        state1 = self.state1
        for word in tf.unstack(x, axis=1): # word: [b, 100]
            # h1 = x*wxh+h0*whh
            # out0: [b, 64]
            out0, state0 = self.rnn_cell0(word, state0, training)
            # out1: [b, 64]
            out1, state1 = self.rnn_cell1(out0, state1, training)

        # out: [b, 64] => [b, 1]
        x = self.outlayer(out1)
        # p(y is pos|x)
        prob = tf.sigmoid(x)

        return prob

def main():
    units = 64
    epochs = 4

    import time

    t0 = time.time()

    model = MyRNN(units)
    model.compile(optimizer = keras.optimizers.Adam(0.001),
                  loss = tf.losses.BinaryCrossentropy(),
                  metrics=['accuracy'],experimental_run_tf_function=False)
    model.fit(db_train, epochs=epochs, validation_data=db_test)

    model.evaluate(db_test)

    t1 = time.time()
    # 64.3 seconds, 83.4%
    print('total time cost:', t1-t0)


if __name__ == '__main__':
    main()

 三、LSTM_layer实战

import  os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import layers


tf.random.set_seed(22)
np.random.seed(22) 
assert tf.__version__.startswith('2.')

batchsz = 128

# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)

db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)



class MyRNN(keras.Model):

    def __init__(self, units):
        super(MyRNN, self).__init__()


        # transform text to embedding representation
        # [b, 80] => [b, 80, 100]
        self.embedding = layers.Embedding(total_words, embedding_len,
                                          input_length=max_review_len)

        # [b, 80, 100] , h_dim: 64
        self.rnn = keras.Sequential([
            # layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True),
            # layers.SimpleRNN(units, dropout=0.5, unroll=True)

            layers.LSTM(units, dropout=0.5, return_sequences=True, unroll=True),
            layers.LSTM(units, dropout=0.5, unroll=True)
        ])


        # fc, [b, 80, 100] => [b, 64] => [b, 1]
        self.outlayer = layers.Dense(1)

    def call(self, inputs, training=None):
        """
        net(x) net(x, training=True) :train mode
        net(x, training=False): test
        :param inputs: [b, 80]
        :param training:
        :return:
        """
        # [b, 80]
        x = inputs
        # embedding: [b, 80] => [b, 80, 100]
        x = self.embedding(x)
        # rnn cell compute
        # x: [b, 80, 100] => [b, 64]
        x = self.rnn(x,training=training)

        # out: [b, 64] => [b, 1]
        x = self.outlayer(x)
        # p(y is pos|x)
        prob = tf.sigmoid(x)

        return prob

def main():
    units = 64
    epochs = 4

    import time

    t0 = time.time()

    model = MyRNN(units)
    model.compile(optimizer = keras.optimizers.Adam(0.001),
                  loss = tf.losses.BinaryCrossentropy(),
                  metrics=['accuracy'])
    model.fit(db_train, epochs=epochs, validation_data=db_test)

    model.evaluate(db_test)


    t1 = time.time()
    # 69.3 secnods, 83%
    print('total time cost:', t1-t0)


if __name__ == '__main__':
    main()

 四、GRU_cell实战

import  os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import layers


tf.random.set_seed(22)
np.random.seed(22) 
assert tf.__version__.startswith('2.')

batchsz = 128

# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)

db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)



class MyRNN(keras.Model):

    def __init__(self, units):
        super(MyRNN, self).__init__()

        # [b, 64]
        self.state0 = [tf.zeros([batchsz, units])]
        self.state1 = [tf.zeros([batchsz, units])]

        # transform text to embedding representation
        # [b, 80] => [b, 80, 100]
        self.embedding = layers.Embedding(total_words, embedding_len,
                                          input_length=max_review_len)

        # [b, 80, 100] , h_dim: 64
        # RNN: cell1 ,cell2, cell3
        # SimpleRNN
        # self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)
        # self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
        self.rnn_cell0 = layers.GRUCell(units, dropout=0.5)
        self.rnn_cell1 = layers.GRUCell(units, dropout=0.5)


        # fc, [b, 80, 100] => [b, 64] => [b, 1]
        self.outlayer = layers.Dense(1)

    def call(self, inputs, training=None):
        """
        net(x) net(x, training=True) :train mode
        net(x, training=False): test
        :param inputs: [b, 80]
        :param training:
        :return:
        """
        # [b, 80]
        x = inputs
        # embedding: [b, 80] => [b, 80, 100]
        x = self.embedding(x)
        # rnn cell compute
        # [b, 80, 100] => [b, 64]
        state0 = self.state0
        state1 = self.state1
        for word in tf.unstack(x, axis=1): # word: [b, 100]
            # h1 = x*wxh+h0*whh
            # out0: [b, 64]
            out0, state0 = self.rnn_cell0(word, state0, training)
            # out1: [b, 64]
            out1, state1 = self.rnn_cell1(out0, state1, training)

        # out: [b, 64] => [b, 1]
        x = self.outlayer(out1)
        # p(y is pos|x)
        prob = tf.sigmoid(x)

        return prob

def main():
    units = 64
    epochs = 4

    import time

    t0 = time.time()

    model = MyRNN(units)
    model.compile(optimizer = keras.optimizers.Adam(0.001),
                  loss = tf.losses.BinaryCrossentropy(),
                  metrics=['accuracy'], experimental_run_tf_function=False)
    model.fit(db_train, epochs=epochs, validation_data=db_test)

    model.evaluate(db_test)

    t1 = time.time()
    # LSTM: 64.3 seconds, 83.4%
    # GRU:  96.7s, 83.4%
    print('total time cost:', t1-t0)


if __name__ == '__main__':
    main()

 五、GRU_layer实战

import  os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import layers


tf.random.set_seed(22)
np.random.seed(22) 
assert tf.__version__.startswith('2.')

batchsz = 128

# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)

db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)



class MyRNN(keras.Model):

    def __init__(self, units):
        super(MyRNN, self).__init__()


        # transform text to embedding representation
        # [b, 80] => [b, 80, 100]
        self.embedding = layers.Embedding(total_words, embedding_len,
                                          input_length=max_review_len)

        # [b, 80, 100] , h_dim: 64
        self.rnn = keras.Sequential([
            # layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True),
            # layers.SimpleRNN(units, dropout=0.5, unroll=True)

            # unroll: Boolean (default False). If True, the network will be unrolled,
            # else a symbolic loop will be used.
            # Unrolling can speed-up a RNN, although it tends to be more memory-intensive.
            # Unrolling is only suitable for short sequences.
            layers.GRU(units, dropout=0.5, return_sequences=True, unroll=True),
            layers.GRU(units, dropout=0.5, unroll=True)
        ])


        # fc, [b, 80, 100] => [b, 64] => [b, 1]
        self.outlayer = layers.Dense(1)

    def call(self, inputs, training=None):
        """
        net(x) net(x, training=True) :train mode
        net(x, training=False): test
        :param inputs: [b, 80]
        :param training:
        :return:
        """
        # [b, 80]
        x = inputs
        # embedding: [b, 80] => [b, 80, 100]
        x = self.embedding(x)
        # rnn cell compute
        # x: [b, 80, 100] => [b, 64]
        x = self.rnn(x,training=training)

        # out: [b, 64] => [b, 1]
        x = self.outlayer(x)
        # p(y is pos|x)
        prob = tf.sigmoid(x)

        return prob

def main():
    units = 64
    epochs = 4

    import time


    t0 = time.time()
    model = MyRNN(units)
    model.compile(optimizer = keras.optimizers.Adam(0.001),
                  loss = tf.losses.BinaryCrossentropy(),
                  metrics=['accuracy'])

    model.fit(db_train, epochs=epochs, validation_data=db_test)

    model.evaluate(db_test)


    t1 = time.time()
    # Unroll=True
    # LSTM: 69.3 secnods, 83%
    # GRU: 100 seconds, 83.4%

    # Unroll=False
    # LSTM:23.71, 81.24
    # GRU 23.05, 83.11
    print('total time cost:', t1-t0)


if __name__ == '__main__':
    main()

 

上一篇:《UCD火花集2:有效的互联网产品设计 交互/信息设计 用户研究讨论》一17.6 提一个懒人需求—找遥控器的电视


下一篇:RNN,LSTM与GRU