一、GRU原理
二、LSTM_cell实战
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf import numpy as np from tensorflow import keras from tensorflow.keras import layers tf.random.set_seed(22) np.random.seed(22) assert tf.__version__.startswith('2.') batchsz = 128 # the most frequest words total_words = 10000 max_review_len = 80 embedding_len = 100 (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words) # x_train:[b, 80] # x_test: [b, 80] x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len) x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len) db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)) db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True) db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)) db_test = db_test.batch(batchsz, drop_remainder=True) print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train)) print('x_test shape:', x_test.shape) class MyRNN(keras.Model): def __init__(self, units): super(MyRNN, self).__init__() # [b, 64] self.state0 = [tf.zeros([batchsz, units]),tf.zeros([batchsz, units])] self.state1 = [tf.zeros([batchsz, units]),tf.zeros([batchsz, units])] # transform text to embedding representation # [b, 80] => [b, 80, 100] self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len) # [b, 80, 100] , h_dim: 64 # RNN: cell1 ,cell2, cell3 # SimpleRNN # self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5) # self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5) self.rnn_cell0 = layers.LSTMCell(units, dropout=0.5) self.rnn_cell1 = layers.LSTMCell(units, dropout=0.5) # fc, [b, 80, 100] => [b, 64] => [b, 1] self.outlayer = layers.Dense(1) def call(self, inputs, training=None): """ net(x) net(x, training=True) :train mode net(x, training=False): test :param inputs: [b, 80] :param training: :return: """ # [b, 80] x = inputs # embedding: [b, 80] => [b, 80, 100] x = self.embedding(x) # rnn cell compute # [b, 80, 100] => [b, 64] state0 = self.state0 state1 = self.state1 for word in tf.unstack(x, axis=1): # word: [b, 100] # h1 = x*wxh+h0*whh # out0: [b, 64] out0, state0 = self.rnn_cell0(word, state0, training) # out1: [b, 64] out1, state1 = self.rnn_cell1(out0, state1, training) # out: [b, 64] => [b, 1] x = self.outlayer(out1) # p(y is pos|x) prob = tf.sigmoid(x) return prob def main(): units = 64 epochs = 4 import time t0 = time.time() model = MyRNN(units) model.compile(optimizer = keras.optimizers.Adam(0.001), loss = tf.losses.BinaryCrossentropy(), metrics=['accuracy'],experimental_run_tf_function=False) model.fit(db_train, epochs=epochs, validation_data=db_test) model.evaluate(db_test) t1 = time.time() # 64.3 seconds, 83.4% print('total time cost:', t1-t0) if __name__ == '__main__': main()
三、LSTM_layer实战
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf import numpy as np from tensorflow import keras from tensorflow.keras import layers tf.random.set_seed(22) np.random.seed(22) assert tf.__version__.startswith('2.') batchsz = 128 # the most frequest words total_words = 10000 max_review_len = 80 embedding_len = 100 (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words) # x_train:[b, 80] # x_test: [b, 80] x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len) x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len) db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)) db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True) db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)) db_test = db_test.batch(batchsz, drop_remainder=True) print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train)) print('x_test shape:', x_test.shape) class MyRNN(keras.Model): def __init__(self, units): super(MyRNN, self).__init__() # transform text to embedding representation # [b, 80] => [b, 80, 100] self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len) # [b, 80, 100] , h_dim: 64 self.rnn = keras.Sequential([ # layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True), # layers.SimpleRNN(units, dropout=0.5, unroll=True) layers.LSTM(units, dropout=0.5, return_sequences=True, unroll=True), layers.LSTM(units, dropout=0.5, unroll=True) ]) # fc, [b, 80, 100] => [b, 64] => [b, 1] self.outlayer = layers.Dense(1) def call(self, inputs, training=None): """ net(x) net(x, training=True) :train mode net(x, training=False): test :param inputs: [b, 80] :param training: :return: """ # [b, 80] x = inputs # embedding: [b, 80] => [b, 80, 100] x = self.embedding(x) # rnn cell compute # x: [b, 80, 100] => [b, 64] x = self.rnn(x,training=training) # out: [b, 64] => [b, 1] x = self.outlayer(x) # p(y is pos|x) prob = tf.sigmoid(x) return prob def main(): units = 64 epochs = 4 import time t0 = time.time() model = MyRNN(units) model.compile(optimizer = keras.optimizers.Adam(0.001), loss = tf.losses.BinaryCrossentropy(), metrics=['accuracy']) model.fit(db_train, epochs=epochs, validation_data=db_test) model.evaluate(db_test) t1 = time.time() # 69.3 secnods, 83% print('total time cost:', t1-t0) if __name__ == '__main__': main()
四、GRU_cell实战
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf import numpy as np from tensorflow import keras from tensorflow.keras import layers tf.random.set_seed(22) np.random.seed(22) assert tf.__version__.startswith('2.') batchsz = 128 # the most frequest words total_words = 10000 max_review_len = 80 embedding_len = 100 (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words) # x_train:[b, 80] # x_test: [b, 80] x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len) x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len) db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)) db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True) db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)) db_test = db_test.batch(batchsz, drop_remainder=True) print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train)) print('x_test shape:', x_test.shape) class MyRNN(keras.Model): def __init__(self, units): super(MyRNN, self).__init__() # [b, 64] self.state0 = [tf.zeros([batchsz, units])] self.state1 = [tf.zeros([batchsz, units])] # transform text to embedding representation # [b, 80] => [b, 80, 100] self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len) # [b, 80, 100] , h_dim: 64 # RNN: cell1 ,cell2, cell3 # SimpleRNN # self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5) # self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5) self.rnn_cell0 = layers.GRUCell(units, dropout=0.5) self.rnn_cell1 = layers.GRUCell(units, dropout=0.5) # fc, [b, 80, 100] => [b, 64] => [b, 1] self.outlayer = layers.Dense(1) def call(self, inputs, training=None): """ net(x) net(x, training=True) :train mode net(x, training=False): test :param inputs: [b, 80] :param training: :return: """ # [b, 80] x = inputs # embedding: [b, 80] => [b, 80, 100] x = self.embedding(x) # rnn cell compute # [b, 80, 100] => [b, 64] state0 = self.state0 state1 = self.state1 for word in tf.unstack(x, axis=1): # word: [b, 100] # h1 = x*wxh+h0*whh # out0: [b, 64] out0, state0 = self.rnn_cell0(word, state0, training) # out1: [b, 64] out1, state1 = self.rnn_cell1(out0, state1, training) # out: [b, 64] => [b, 1] x = self.outlayer(out1) # p(y is pos|x) prob = tf.sigmoid(x) return prob def main(): units = 64 epochs = 4 import time t0 = time.time() model = MyRNN(units) model.compile(optimizer = keras.optimizers.Adam(0.001), loss = tf.losses.BinaryCrossentropy(), metrics=['accuracy'], experimental_run_tf_function=False) model.fit(db_train, epochs=epochs, validation_data=db_test) model.evaluate(db_test) t1 = time.time() # LSTM: 64.3 seconds, 83.4% # GRU: 96.7s, 83.4% print('total time cost:', t1-t0) if __name__ == '__main__': main()
五、GRU_layer实战
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf import numpy as np from tensorflow import keras from tensorflow.keras import layers tf.random.set_seed(22) np.random.seed(22) assert tf.__version__.startswith('2.') batchsz = 128 # the most frequest words total_words = 10000 max_review_len = 80 embedding_len = 100 (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words) # x_train:[b, 80] # x_test: [b, 80] x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len) x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len) db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)) db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True) db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)) db_test = db_test.batch(batchsz, drop_remainder=True) print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train)) print('x_test shape:', x_test.shape) class MyRNN(keras.Model): def __init__(self, units): super(MyRNN, self).__init__() # transform text to embedding representation # [b, 80] => [b, 80, 100] self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len) # [b, 80, 100] , h_dim: 64 self.rnn = keras.Sequential([ # layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True), # layers.SimpleRNN(units, dropout=0.5, unroll=True) # unroll: Boolean (default False). If True, the network will be unrolled, # else a symbolic loop will be used. # Unrolling can speed-up a RNN, although it tends to be more memory-intensive. # Unrolling is only suitable for short sequences. layers.GRU(units, dropout=0.5, return_sequences=True, unroll=True), layers.GRU(units, dropout=0.5, unroll=True) ]) # fc, [b, 80, 100] => [b, 64] => [b, 1] self.outlayer = layers.Dense(1) def call(self, inputs, training=None): """ net(x) net(x, training=True) :train mode net(x, training=False): test :param inputs: [b, 80] :param training: :return: """ # [b, 80] x = inputs # embedding: [b, 80] => [b, 80, 100] x = self.embedding(x) # rnn cell compute # x: [b, 80, 100] => [b, 64] x = self.rnn(x,training=training) # out: [b, 64] => [b, 1] x = self.outlayer(x) # p(y is pos|x) prob = tf.sigmoid(x) return prob def main(): units = 64 epochs = 4 import time t0 = time.time() model = MyRNN(units) model.compile(optimizer = keras.optimizers.Adam(0.001), loss = tf.losses.BinaryCrossentropy(), metrics=['accuracy']) model.fit(db_train, epochs=epochs, validation_data=db_test) model.evaluate(db_test) t1 = time.time() # Unroll=True # LSTM: 69.3 secnods, 83% # GRU: 100 seconds, 83.4% # Unroll=False # LSTM:23.71, 81.24 # GRU 23.05, 83.11 print('total time cost:', t1-t0) if __name__ == '__main__': main()