TensorFlow2教程19:LSTM和GRU

  1.导入数据

  num_words = 30000

  maxlen = 200

  (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=num_words)

  print(x_train.shape, ' ', y_train.shape)

  print(x_test.shape, ' ', y_test.shape)

  x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen, padding='post')

  x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen, padding='post')

  print(x_train.shape, ' ', y_train.shape)

  print(x_test.shape, ' ', y_test.shape)

  1.LSTM

  def lstm_model():

  model = keras.Sequential([

  layers.Embedding(input_dim=30000, output_dim=32, input_length=maxlen),

  layers.LSTM(32, return_sequences=True),

  layers.LSTM(1, activation='sigmoid', return_sequences=False)

  ])

  model.compile(optimizer=keras.optimizers.Adam(),

  loss=keras.losses.BinaryCrossentropy(),

  metrics=['accuracy'])

  return model

  model = lstm_model()

  model.summary()

  Model: "sequential_2"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  embedding_2 (Embedding) (None, 200, 32) 960000

  _________________________________________________________________

  unified_lstm_4 (UnifiedLSTM) (None, 200, 32) 8320

  _________________________________________________________________

  unified_lstm_5 (UnifiedLSTM) (None, 1) 136

  =================================================================

  Total params: 968,456

  Trainable params: 968,456

  Non-trainable params: 0

  _________________________________________________________________

  %%time

  history = model.fit(x_train, y_train, batch_size=64, epochs=5,validation_split=0.1)

  Train on 22500 samples, validate on 2500 samples

  Epoch 1/5

  22500/22500 [==============================] - 100s 4ms/sample - loss: 0.6589 - accuracy: 0.6056 - val_loss: 0.6090 - val_accuracy: 0.6544

  Epoch 2/5

  22500/22500 [==============================] - 100s 4ms/sample - loss: 0.6418 - accuracy: 0.6076 - val_loss: 0.6356 - val_accuracy: 0.6068

  Epoch 3/5

  22500/22500 [==============================] - 100s 4ms/sample - loss: 0.5763 - accuracy: 0.6980 - val_loss: 0.5984 - val_accuracy: 0.6724

  Epoch 4/5

  22500/22500 [==============================] - 102s 5ms/sample - loss: 0.5749 - accuracy: 0.7150 - val_loss: 0.5044 - val_accuracy: 0.7900

  Epoch 5/5

  22500/22500 [==============================] - 102s 5ms/sample - loss: 0.4893 - accuracy: 0.7993 - val_loss: 0.7230 - val_accuracy: 0.6756

  CPU times: user 14min 29s, sys: 42.5 s, total: 15min 12s

  Wall time: 8min 24s

  import matplotlib.pyplot as plt

  plt.plot(history.history['accuracy'])

  plt.plot(history.history['val_accuracy'])

  plt.legend(['training', 'valivation'], loc='upper left')

  plt.show()

  

TensorFlow2教程19:LSTM和GRU

 

  3.GRU

  def lstm_model():

  model = keras.Sequential([

  layers.Embedding(input_dim=30000, output_dim=32, input_length=maxlen),

  layers.GRU(32, return_sequences=True),

  layers.GRU(1, activation='sigmoid', return_sequences=False)

  ])无锡妇科哪家医院好 http://www.87554006.com/

  model.compile(optimizer=keras.optimizers.Adam(),

  loss=keras.losses.BinaryCrossentropy(),

  metrics=['accuracy'])

  return model

  model = lstm_model()

  model.summary()

  Model: "sequential_3"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  embedding_3 (Embedding) (None, 200, 32) 960000

  _________________________________________________________________

  unified_gru (UnifiedGRU) (None, 200, 32) 6336

  _________________________________________________________________

  unified_gru_1 (UnifiedGRU) (None, 1) 105

  =================================================================

  Total params: 966,441

  Trainable params: 966,441

  Non-trainable params: 0

  _________________________________________________________________

  %%time

  history = model.fit(x_train, y_train, batch_size=64, epochs=5,validation_split=0.1)

  Train on 22500 samples, validate on 2500 samples

  Epoch 1/5

  22500/22500 [==============================] - 94s 4ms/sample - loss: 0.6498 - accuracy: 0.5847 - val_loss: 0.4840 - val_accuracy: 0.7664

  Epoch 2/5

  22500/22500 [==============================] - 98s 4ms/sample - loss: 0.4172 - accuracy: 0.8255 - val_loss: 0.4279 - val_accuracy: 0.8300

  Epoch 3/5

  22500/22500 [==============================] - 101s 5ms/sample - loss: 0.3179 - accuracy: 0.8825 - val_loss: 0.3918 - val_accuracy: 0.8472

  Epoch 4/5

  22500/22500 [==============================] - 99s 4ms/sample - loss: 0.3306 - accuracy: 0.8870 - val_loss: 0.3959 - val_accuracy: 0.8468

  Epoch 5/5

  22500/22500 [==============================] - 96s 4ms/sample - loss: 0.2607 - accuracy: 0.9120 - val_loss: 0.3849 - val_accuracy: 0.8532

  CPU times: user 14min 25s, sys: 38.9 s, total: 15min 4s

  Wall time: 8min 10s

  plt.plot(history.history['accuracy'])

  plt.plot(history.history['val_accuracy'])

  plt.legend(['training', 'valivation'], loc='upper left')

  plt.show()

  

TensorFlow2教程19:LSTM和GRU
上一篇:【deeplearning.ai】RNN & LSTM


下一篇:nvidia-smi指令报错:Failed to initialize NVML: Driver解决