版权声明:License CC BY-NC-SA 4.0 https://blog.csdn.net/wizardforcel/article/details/73274683
# 来源:NumPy Essentials ch5
矩阵
import numpy as np
ndArray = np.arange(9).reshape(3,3)
# matrix 可以从 ndarray 直接构建
x = np.matrix(ndArray)
# identity 用于构建单位矩阵
y = np.mat(np.identity(3))
x
'''
matrix([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
'''
y
'''
matrix([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
'''
# 矩阵的相加是逐元素的
x + y
'''
matrix([[ 1., 1., 2.],
[ 3., 5., 5.],
[ 6., 7., 9.]])
'''
# 矩阵乘法是一行乘一列
x * x
'''
matrix([[ 15, 18, 21],
[ 42, 54, 66],
[ 69, 90, 111]])
'''
# np.dot 效果相同
np.dot(ndArray, ndArray)
'''
array([[ 15, 18, 21],
[ 42, 54, 66],
[ 69, 90, 111]])
'''
# 矩阵的乘方
x ** 3
'''
matrix([[ 180, 234, 288],
[ 558, 720, 882],
[ 936, 1206, 1476]])
'''
z = np.matrix(np.random.random_integers(1, 50, 9).reshape(3,3))
z
'''
matrix([[32, 21, 28],
[ 2, 24, 22],
[32, 20, 22]])
'''
# I 属性求矩阵的逆,不可逆时报错
z.I
'''
matrix( [[-0.0237 -0.0264 0.0566]
[-0.178 0.0518 0.1748]
[ 0.1963 -0.0086 -0.1958]])
'''
# H 属性求共轭转置
z.H
'''
matrix([[32 2 32]
[21 24 20]
[28 22 22]])
'''
# 求解线性方程组
# Ax = b => x = A.I b
# 可以从这种字符串创建矩阵
# 空格分隔行,分号分隔列
A = np.mat('3 1 4; 1 5 9; 2 6 5')
b = np.mat([[1],[2],[3]])
x = A.I * b
x
'''
matrix([[ 0.2667],
[ 0.4667],
[-0.0667]])
'''
# allclose 验证是否等价
np.allclose(A * x, b)
# True
# matrix 使用矩阵的方法来计算转置
x = np.arange(25000000).reshape(5000,5000)
y = np.mat(x)
'''
%timeit x.T
10000000 loops, best of 3: 176 ns per loop
%timeit y.T
1000000 loops, best of 3: 1.36 µs per loop
'''
# A 属性返回等价的 ndarray
# A1 属性返回展开的等价 ndarray
A.A
'''
array([[3, 1, 4],
[1, 5, 9],
[2, 6, 5]])
'''
A.A1
# array([3, 1, 4, 1, 5, 9, 2, 6, 5])
线性代数
x = np.array([[1, 2], [3, 4]])
y = np.array([[10, 20], [30, 40]])
# dot 对一维数组计算内积
# 对二维数组计算矩阵乘法
np.dot(x, y)
'''
[[1*10+2*30, 1*20+2*40],
[3*10+4*30, 3*20+4*40]]
=>
[[ 70, 100],
[150, 220]]
'''
# vdot 将数组展开计算内积
# 等价于 np.dot(x.ravel(), y.ravel())
np.vdot(x, y)
# 1*10+2*20+3*30+4*40=300
# outer计算外积
# 返回一个二维数组,每个元素是 x[i]*y[j]
np.outer(x,y)
'''
[[1*10, 1*20, 1*30, 1*40],
[2*10, 2*20, 2*30, 2*40],
[3*10, 3*20, 3*30, 3*40],
[4*10, 4*20, 4*30, 4*40]]
=>
[[ 10, 20, 30, 40],
[ 20, 40, 60, 80],
[ 30, 60, 90, 120],
[ 40, 80, 120, 160]]
'''
# cross 计算叉积
# 接受一维二元或三元向量
a = np.array([1,0,0])
b = np.array([0,1,0])
np.cross(a,b)
'''
det([[i, j, k],
[1, 0, 0],
[0, 1, 0]])
=>
[0, 0, 1]
'''
np.cross(b,a)
# array([ 0, 0, -1])
# linalg.det 计算行列式
# 对于二阶方阵来说
# det = m[0,0]*m[1,1] - m[0,1]*m[1,0]
x = np.array([[4,8],[7,9]])
np.linalg.det(x)
# -20.000000000000007
# linalg.inv 求逆
np.linalg.inv(x)
'''
array([[-0.45, 0.4 ],
[ 0.35, -0.2 ]])
'''
np.mat(x).I
'''
matrix([[-0.45, 0.4 ],
[ 0.35, -0.2 ]])
'''
# linalg.solve 解方程组
# 原理是 dot(inv(A), b)
# 不可逆时会报错
x = np.linalg.solve(A,b)
x
'''
matrix([[ 0.2667],
[ 0.4667],
[-0.0667]])
'''
分解
x = np.random.randint(0, 10, 9).reshape(3,3)
x
'''
array([[ 1, 5, 0]
[ 7, 4, 0]
[ 2, 9, 8]])
'''
# 特征值分解
# https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
# w 为特征值,v 的列向量为特征向量
w, v = np.linalg.eig(x)
w
# array([ 8., 8.6033, -3.6033])
v
'''
array([[ 0., 0.0384, 0.6834]
[ 0., 0.0583, -0.6292]
[ 1., 0.9976, 0.3702]]
)
'''
# 复矩阵的分解
y = np.array([[1, 2j],[-3j, 4]])
np.linalg.eig(y)
'''
(array([ -0.3723+0.j, 5.3723+0.j]),
array([[0.8246+0.j , 0.0000+0.416j ],
[-0.0000+0.5658j, 0.9094+0.j ]]))
'''
# 可能存在舍入错误
# 这里的特征值应该是 1 +/- 1e-10
z = np.array([[1 + 1e-10, -1e-10],[1e-10, 1 - 1e-10]])
np.linalg.eig(z)
'''
(array([ 1., 1.]), array([[0.70710678, 0.707106],
[0.70710678, 0.70710757]]))
'''
# 奇异值分解可以看做特征值分解的扩展
# 可用于非方阵
# 如果 A 是 mxn 矩阵,可分解为 A = u * sigma * v
# u 是 mxmin(m,n) 矩阵,列向量为左奇异向量,也就是 A A^T 的特征向量
# sigma 是 min(m,n) 阶奇异值的对角阵,奇异值是 A A^T 和 A^T A 的特征值平方根
# v 是 min(m,n)xn 矩阵,列向量为右奇异向量,也就是 A^T A 的特征向量
np.set_printoptions(precision = 4)
A = np.array([3,1,4,1,5,9,2,6,5]).reshape(3,3)
# 这里没有设置 full_matrices=False
# u 是 mxm 阶,v 是 nxn 阶
u, sigma, vh = np.linalg.svd(A)
u
'''
array([[-0.3246, 0.799 , 0.5062],
[-0.7531, 0.1055, -0.6494],
[-0.5723, -0.592 , 0.5675]])
'''
vh
'''
array([[-0.2114, -0.5539, -0.8053],
[ 0.4633, -0.7822, 0.4164],
[ 0.8606, 0.2851, -0.422 ]])
'''
sigma
# array([ 13.5824, 2.8455, 2.3287])
# 如果设置了 full_matrices=False
# 就能将其乘起来
u, sigma, v = np.linalg.svd(A, full_matrices=False)
u * np.diag(s) * v
'''
array([[3, 1, 4],
[1, 5, 9],
[2, 6, 5]])
'''
# QR 分解
# Ax = b, x = A^(-1) b
# A = QR
# x = R^(-1) Q^(-1) b
# = R^(-1) Q.T b
b = np.array([1,2,3]).reshape(3,1)
q, r = np.linalg.qr(A)
x = np.dot(np.linalg.inv(r), np.dot(q.T, b))
x
'''
array([[ 0.2667],
[ 0.4667],
[-0.0667]])
'''
多项式
# root 表示多项式的根为 1,2,3,4
root = np.array([1,2,3,4])
# poly 把根转化成系数数组
# 高次项在前
np.poly(root)
# array([ 1, -10, 35, -50, 24])
# 也就是 x ** 4 - 10 * x ** 3 + 35 * x ** 2 - 50 * x + 24
# roots 求多项式的根
np.roots([1,-10,35,-50,24])
# array([ 4., 3., 2., 1.])
# polyval 计算多项式的值
# 接受多项式系数和 x 值
np.polyval([1,-10,35,-50,24], 5)
# 24
coef = np.array([1,-10,35,-50,24])
# polyint 求多项式函数的不定积分
# ∫(x ** n)dx = x ** (n + 1) / (n + 1) + C
# ∫(u + v)dx = ∫udx + ∫vdx
# 这里的常数项 C 一律为 0
integral = np.polyint(coef)
integral
# array([ 0.2 , -2.5 , 11.6667, -25. , 24. , 0. ])
# polyder 对多项式求导
# (x ** n)' = n * x ** (n - 1)
# (u + v)' + u' + v'
np.polyder(integral) == coef
# array([ True, True, True, True, True], dtype=bool)
# 还可以直接算五阶导数
np.polyder(coef, 5)
# array([], dtype=int32)
# 构造 Polynomial 对象
from numpy.polynomial import polynomial
p = polynomial.Polynomial(coef)
p
# Polynomial([ 1., -10., 35., -50., 24.], [-1, 1], [-1, 1])
# 取系数
p.coef
# array([ 1., -10., 35., -50., 24.])
# 取根
p.roots()
# array([ 0.25 , 0.3333, 0.5 , 1. ])
# 求函数值
polynomial.polyval(p, 5)
# Polynomial([ 5.], [-1., 1.], [-1., 1.])
# 积分
p.integ()
Polynomial([ 0. , 1. , -5. , 11.6667, -12.5 , 4.8 ], [-1., 1.], [-1., 1.])
# 微分
p.integ().deriv() == p
# True
曲线拟合
# 我们的分组为
# <20: x7
# 21 ~ 30: x24
# 31 ~ 40: x21
# 41 ~ 50: x19
# 51 ~ 60: x17
# >60: x12
groups = [7, 24, 21, 19, 17, 12]
# 我们模拟生成样本年龄,并将其连接起来
# concatenate 沿轴 0 连接数组
age = np.concatenate([np.random.randint((ind + 1)*10, (ind + 2)*10, group) for ind, group in enumerate(groups)])
age
'''
array(
[11, 15, 12, 17, 17, 18, 12, 26, 29, 24, 28, 25, 27, 25, 26, 24, 23, 27, 26, 24, 27, 20, 28, 20, 22, 21, 23, 25, 27, 24, 25, 35, 39, 33, 35, 30, 32, 32, 36, 38, 31, 35, 38, 31, 37, 36, 39, 30, 36, 33, 36, 37, 45, 41, 44, 48, 45, 40, 44, 42, 47, 46, 47, 42, 42, 42, 44, 40, 40, 47, 47, 57, 56, 53, 53, 57, 54, 55, 53, 52, 54, 57, 53, 58, 58, 54, 57, 55, 64, 67, 60, 63, 68, 65, 66, 63, 67, 64, 68, 66]
)
'''
# 生成样本的分数
scores = [5.5, 5.7, 5.4, 4.9, 4.6, 4.4]
sim_scores = np.concatenate([.01 * np.random.rand(group) + scores[ind] for ind, group in enumerate(groups)] )
sim_scores
'''
array([
5.5089, 5.5015, 5.5024, 5.5 , 5.5033, 5.5019, 5.5012,
5.7068, 5.703 , 5.702 , 5.7002, 5.7084, 5.7004, 5.7036,
5.7055, 5.7024, 5.7099, 5.7009, 5.7013, 5.7093, 5.7076,
5.7029, 5.702 , 5.7067, 5.7007, 5.7004, 5.7 , 5.7017,
5.702 , 5.7031, 5.7087, 5.4079, 5.4082, 5.4083, 5.4025,
5.4008, 5.4069, 5.402 , 5.4071, 5.4059, 5.4037, 5.4004,
5.4024, 5.4058, 5.403 , 5.4041, 5.4075, 5.4062, 5.4014,
5.4089, 5.4003, 5.4058, 4.909 , 4.9062, 4.9097, 4.9014,
4.9097, 4.9023, 4.9 , 4.9002, 4.903 , 4.9062, 4.9026,
4.9094, 4.9099, 4.9071, 4.9058, 4.9067, 4.9005, 4.9016,
4.9093, 4.6041, 4.6031, 4.6016, 4.6021, 4.6079, 4.6046,
4.6055, 4.609 , 4.6052, 4.6005, 4.6017, 4.6091, 4.6073,
4.6029, 4.6012, 4.6062, 4.6098, 4.4014, 4.4043, 4.4013,
4.4091, 4.4087, 4.4087, 4.4027, 4.4017, 4.4067, 4.4003,
4.4021, 4.4061])
'''
# 现在我们需要构造数据集
# 行为记录,列为属性
# 第一个属性是年龄,第二个属性恒为 1
# 因为 y = k0 * x0 + k1 * x1
# 我们如果想得到常数项,就需要让 x0 恒为 1
AGE = np.vstack([age, np.ones(len(age))]).T
# linalg.lstsq 使用最小二乘法做多元线性回归
# 原理是 x = (A.T * A).I * A.T * b
# 其中 x 是系数数组,A 是自变量数据集,b 是因变量数组
# 结果为属性对应的系数,score ~= m * age + c
m, c = np.linalg.lstsq(AGE, sim_scores)[0]
m
# -0.029435313781
c
# 6.30307651938
year = np.arange(1,11)
price = np.array([129000, 133000, 138000, 144000, 142000, 150000, 135000, 134000, 139000]).
year
# array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# polyfit 执行一元多项式回归
# 参数为自变量、因变量和最高项次数
# 原理是转换为多元线性回归
# 特征为 1, x, x ** 2, ..., x ** n
# 结果为系数数组,高次在前
# year ~= a * price ** 2 + b * price + ca*11**2 + b*11 + c
a, b, c = np.polyfit(year, price, 2)
a
# -549.242424242
b
# 6641.66666667
c
# 123116.666667
a*11**2 + b*11 + c
# 129716.66666666642