Windows上mxnet实战深度学习:Neural Net

前提:

  • 假设已经在Windows上安装配置好mxnet和python语言包。
  • 假设mxnet安装目录为D:\mxnet
  • 假设已安装好wget

  可以参考 这篇文章

打开Windows的命令提示符:

  执行如下命令,进入目录

D:\
cd D:\mxnet\example\neural-style

  修改download.sh命令,修改为如下内容,并保存执行,下载相关数据文件。

#!/bin/bash

#由于某种墙的原因,可能需要设置代理,去掉#即可
#set http_proxy=http://127.0.0.1:1080
#set https_proxy=https://127.0.0.1:1080 mkdir -p model
cd model
# 添加--no-check-certificate,避免无证书出错
wget --no-check-certificate https://github.com/dmlc/web-data/raw/master/mxnet/neural-style/model/vgg19.params
cd .. mkdir -p input
cd input
wget --no-check-certificate https://github.com/dmlc/web-data/raw/master/mxnet/neural-style/input/IMG_4343.jpg
wget --no-check-certificate https://github.com/dmlc/web-data/raw/master/mxnet/neural-style/input/starry_night.jpg
cd .. mkdir -p output

  到 网站,下载已编译好的 numpy、scipy 和 scikit-image  三个 whl文件

  执行如下命令,安装包

pip install numpy-1.11.0+mkl-cp35-cp35m-win_amd64.whl
pip install scipy-0.17.0-cp35-none-win_amd64.whl
pip install scikit_image-0.12.3-cp35-cp35m-win_amd64.whl

  执行如下命令, 进行训练

python run.py --content-image input/IMG_4343.jpg --style-image input/starry_night.jpg

  

  

  

上一篇:用docker弹性部署自己的服务


下一篇:.NET Core Generic Host项目使用Topshelf部署为Windows服务