八大排序算法——堆排序(动图演示 思路分析 实例代码java 复杂度分析)

一、动图演示

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

二、思路分析

  先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:

大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]  

小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]  

了解了这些定义。接下来看看堆排序的基本思想及基本步骤:

堆排序基本思想及步骤

  堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了

步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。

  a.假设给定无序序列结构如下

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

2.此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

4.找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

此时,我们就将一个无需序列构造成了一个大顶堆。

步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

a.将堆顶元素9和末尾元素4进行交换

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

b.重新调整结构,使其继续满足堆定义

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

c.再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

八大排序算法——堆排序(动图演示  思路分析  实例代码java  复杂度分析)

再简单总结下堆排序的基本思路:

  a.将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

  b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

  c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

三、复杂度分析

1.  时间复杂度:堆排序是一种选择排序,整体主要由构建初始堆+交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)...1]逐步递减,近似为nlogn。所以堆排序时间复杂度最好和最坏情况下都是O(nlogn)级。

2.  空间复杂度:堆排序不要任何辅助数组,只需要一个辅助变量,所占空间是常数与n无关,所以空间复杂度为O(1)

 四、Java 代码如下

import java.util.Arrays;
public class Main {
public static void main(String[] args) {
int[] arr = new int[]{4,6,8,5,9};
//从最后一个非叶节点开始构建大顶堆
for (int i = arr.length/2-1; i >=0; i--) {
maximumHeap(i,arr);
}
//从最小的叶子节点开始与根节点进行交换并重新构建大顶堆
for (int i = arr.length-1; i >=0; i--) {
swap(arr,0,i);
maximumHeap(0,arr);
}
System.out.println(Arrays.toString(arr));
}
//构建大顶堆
public static void maximumHeap(int i,int[] arr){
int temp = arr[i];
for (int j = i*2+1; j < arr.length; j=j*2+1) {
//如果右孩子大于做孩子,则指向右孩子
if(j+1<arr.length && arr[j+1]>arr[j]){
j++;
}
//如果最大的孩子大于当前节点,则将大孩子赋给当前节点,修改当前节点为其大孩子节点,再向下走。
if(arr[j]>temp){
arr[i] = arr[j];
i = j;
}else{
break;
}
}
//将temp放到最终位置
arr[i] = temp;
}
//交换
public static void swap(int[] arr,int i,int j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

参考:https://www.cnblogs.com/chengxiao/p/6129630.html

上一篇:如何在 Vue 中导出数据至 Excel 表格 - 卡拉云


下一篇:Codeforces Round #485 (Div. 2) A. Infinity Gauntlet