6.1 市场需求
该技术的市场应用主要在安防监控、娱乐APP中,市场空间很大,有以下几类应用:
1、 体育健身:根据人体关键点信息,分析人体姿态、运动轨迹、动作角度等,辅助运动员进行体育训练,分析健身锻炼效果,提升教学效率;
2、 娱乐互动:视频直播平台、线下互动屏幕等场景,可基于人体检测和关键点分析,增加身体道具、体感游戏等互动形式,丰富娱乐体验;
3、 安防监控:实时监测定位人体,判断特殊时段、核心区域是否有人员入侵;基于人体关键点信息,进行二次开发,识别特定的异常行为,及时预警管控;
而且不仅仅应用在视频安防中,该技术还可以检测老年人是否摔倒等等。
6.2 应用与挑战
人体骨骼关键点检测是计算机视觉的基础性算法之一,在计算机视觉的其他相关领域的研究中都起到了基础性的作用,如行为识别、人物跟踪、步态识别等相关领域。具体应用主要集中在智能视频监控,病人监护系统,人机交互,虚拟现实,人体动画,智能家居,智能安防,运动员辅助训练等等。
由于人体具有相当的柔性,会出现各种姿态和形状,人体任何一个部位的微小变化都会产生一种新的姿态,同时其关键点的可见性受穿着、姿态、视角等影响非常大,而且还面临着遮挡、光照、雾等环境的影响,除此之外,2D人体关键点和3D人体关键点在视觉上会有明显的差异,身体不同部位都会有视觉上缩短的效果(foreshortening),使得人体骨骼关键点检测成为计算机视觉领域中一个极具挑战性的课题。
6.3 相关数据集
LSP(Leeds Sports Pose Dataset):单人人体关键点检测数据集,关键点个数为14,样本数2K,在目前的研究中基本上被弃用;
FLIC(Frames Labeled In Cinema):单人人体关键点检测数据集,关键点个数为9,样本数2W,在目前的研究中基本上被弃用;
MPII(MPII Human Pose Dataset):单人/多人人体关键点检测数据集,关键点个数为16,样本数25K;
MSCOCO:多人人体关键点检测数据集,关键点个数为17,样本数多于30W,目前的相关研究基本上还需要在该数据集上进行验证;
AI Challenger:多人人体关键点检测数据集,关键点个数为14,样本数约38W,竞赛数据集;
PoseTrack:最新的关于人体骨骼关键点的数据集,多人人体关键点跟踪数据集,包含单帧关键点检测、多帧关键点检测、多人关键点跟踪三个人物,多于500个视频序列,帧数超过20K,关键点个数为15。
6.4 安装与实践
基于CMU开源的人体关键点检测模型OpenPose,我们做了一些实验。实验的代码是基于OpenPose实现的Pytorch版本。
openpose是基于CVPR 2016 Convolutional Pose Machine(CPM)和CVPR2017 realtime multi-person pose estimation以及CVPR2017 Hand Keypoint Detection in Single Images using Multiview Bootstrapping这3篇paper的模型做出来的。
实验环境
项目 说明
处理器 Intel Core i7
内存 32GB
系统类型 Ubuntu 16.01
显卡 GTX 1081ti
硬盘 256GB SSD
开发工具 Pycharm
开发语言 Python
在实验中,我们分别针对单人、多人进行了关键点检测,实验效果展示如图所示。
单人检测
图 2 1 单人检测
多人检测
图 2 2多人检测