题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5293
\(sum[u]\) 表示子树 \(dp\) 值的和,\(dp[u]\) 表示子树 \(u\) 的答案,这里我用 \(dp[u][0]\) 表示 \(sum\), \(dp[u][1]\) 表示 \(dp\) 值。考虑以 \(u\) 结点为 \(lca\) 的链,如果不放这条链,答案就是子节点 \(dp\) 值之和,否则答案为链所占的结点的 \(sum\) 之和加上链的权值,但这里重复计算了链上结点的 \(dp\) 值,所以再将链上的 \(dp\) 值减掉。所以开两棵线段树,一棵维护 \(sum\), 一棵维护 \(dp\)。
注意线段树中更新顺序的问题,先更新 \(u\) 结点的 \(sum\) 值,因为在计算 \(u\) 结点 \(dp\) 值时需要用到。处理完该节点所有链后,再更新 \(dp[u]\),因为减掉链上结点 \(dp\) 值的时候不能减去 \(u\) 点 \(dp\) 值。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
typedef long long ll;
const int maxn = 100010;
int T, n, m;
int dp[maxn][2];
int h[maxn], cnt = 0;
struct E{
int to, next;
}e[maxn << 1];
void add(int u, int v){
e[++cnt].to = v;
e[cnt].next = h[u];
h[u] = cnt;
}
struct Node{
int sum;
}t[2][maxn << 2];
struct Chain{
int u, v, w;
}c[maxn];
int dep[maxn], sz[maxn], fa[maxn], son[maxn];
int top[maxn], st[maxn], dfn = 0;
vector<Chain> ch[maxn]; // 以 i 为 lca 的链的集合
void dfs1(int u, int par){
dep[u] = dep[par] + 1;
sz[u] = 1;
fa[u] = par;
int maxson=-1;
for(int i = h[u] ; i != -1 ; i = e[i].next){
int v = e[i].to;
if(v == par) continue;
dfs1(v, u);
sz[u] += sz[v];
if(sz[v] > maxson){
maxson = sz[v];
son[u] = v;
}
}
}
void dfs2(int u, int tp){
top[u] = tp;
st[u] = ++dfn;
if(!son[u]) return;
dfs2(son[u], tp);
for(int i = h[u] ; i != -1 ; i = e[i].next){
int v = e[i].to;
if(v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
void pushup(int i, int P){
t[P][i].sum = t[P][i << 1].sum + t[P][i << 1 | 1].sum;
}
void build(int i,int l,int r, int P){
if (l==r){
t[P][i].sum = dp[st[l]][P];
return;
}
int mid = (l + r) >> 1;
build(i << 1, l, mid, P);
build(i << 1 | 1, mid + 1, r, P);
pushup(i, P);
}
void modify(int i, int k, int l, int r, int p, int P){
if(l == r){
t[P][i].sum = k;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) modify(i << 1, k, l, mid, p, P);
else modify(i << 1 | 1, k, mid + 1, r, p, P);
pushup(i, P);
}
int query(int i, int l, int r, int x, int y, int P){
if (x <= l && r <= y){
return t[P][i].sum;
}
int mid = (l + r) >> 1;
int ans = 0;
if(x <= mid) ans += query(i << 1, l, mid, x, y, P);
if(y > mid) ans += query(i << 1 | 1, mid + 1, r, x, y, P);
return ans;
}
int LCA(int u, int v){
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]]) swap(u, v);
u = fa[top[u]];
}
return dep[u] < dep[v] ? u : v;
}
int qry(int u, int v, int P){
int ans = 0;
while(top[u] != top[v]){
if(dep[top[u]] < dep[top[v]]) swap(u, v);
ans += query(1, 1, n, st[top[u]], st[u], P);
u = fa[top[u]];
}
if(dep[u] > dep[v]) swap(u, v);
ans += query(1, 1, n, st[u], st[v], P);
return ans;
}
void dfs(int u, int par){
dp[u][0] = dp[u][1] = 0;
for(int i = h[u] ; i != -1 ; i = e[i].next){
int v = e[i].to;
if(v == par) continue;
dfs(v, u);
dp[u][0] += dp[v][1];
}
dp[u][1] = dp[u][0]; // 不选链
modify(1, dp[u][0], 1, n, st[u], 0);
for(int i = 0 ; i < ch[u].size() ; ++i){ // 选链
Chain no = ch[u][i];
dp[u][1] = max(dp[u][1], qry(no.u, no.v, 0) - qry(no.u, no.v, 1) + no.w);
}
modify(1, dp[u][1], 1, n, st[u], 1);
}
ll read(){ ll s = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9'){ if(ch == '-') f = -1; ch = getchar(); } while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); } return s * f; }
int main(){
T = read();
while(T--){
memset(h, -1, sizeof(h)); cnt = 0;
memset(son, 0, sizeof(son));
memset(dp, 0, sizeof(dp));
for(int i = 1 ; i <= n ; ++i) ch[i].clear();
dfn = 0;
n = read(), m = read();
int u, v;
for(int i = 1 ; i <= n - 1 ; ++i){
u = read(), v = read();
add(u, v); add(v, u);
}
dfs1(1, 0);
dfs2(1, 1);
for(int i = 1 ; i <= m ; ++i){
c[i].u = read(), c[i].v = read(), c[i].w = read();
int lca = LCA(c[i].u, c[i].v);
ch[lca].push_back(c[i]);
}
build(1, 1, n, 0);
build(1, 1, n, 1);
dfs(1, 0);
printf("%d\n", dp[1][1]);
}
return 0;
}