题意:
有n个点的一棵树。其中树上有m条已知的链,每条链有一个权值。从中选出任意个不相交的链使得链的权值和最大。
思路:
树形DP。设dp[i]表示i的子树下的最优权值和,sum[i]表示不考虑i点时子树的最优权值和,即(j是i的儿子),显然dp[i]>=sum[i]。那么问题是考虑i点时dp[i]的值是多少,假设有一条链通过i,且端点a和b都在i的子树里,即LCA(a,b)=i,如果考虑加上这条链的权值,那么a->i, b->i的路上的点v都不能有链经过它们(题目要求链不相交),那么-dp[v],但至少有sum[v],即,其中v是某条链上的点。那么怎么快速求出sigma的值呢,想到树状数组维护前缀和。那么怎么遍历呢,用DFS序遍历,思想和“粮食分配”一样,在L[v]上修改,在R[v]上恢复。
#include <bits/stdc++.h>
using namespace std; const int N = 1e5 + 5;
const int D = 20; struct Chain {
int u, v, w;
};
vector<Chain> chains[N];
vector<int> edges[N];
int dp[N], sum[N];
int n, m;
int tim; void init() {
for (int i=1; i<=n; ++i) {
edges[i].clear ();
chains[i].clear ();
}
} int rt[N][D], dep[N]; void init_LCA() {
for (int j=1; j<D; ++j) {
for (int i=1; i<=n; ++i) {
rt[i][j] = rt[i][j-1] ? rt[rt[i][j-1]][j-1] : 0;
}
}
} int LCA(int u, int v) {
if (dep[u] < dep[v]) swap (u, v);
for (int i=0; i<D; ++i) {
if ((dep[u] - dep[v]) >> i & 1) {
u = rt[u][i];
}
}
if (u == v) return u;
for (int i=D-1; i>=0; --i) {
if (rt[u][i] != rt[v][i]) {
u = rt[u][i];
v = rt[v][i];
}
}
return rt[u][0];
} struct BIT {
int C[N];
int n;
void init(int n) {
this->n = n;
memset (C, 0, sizeof (C));
}
void updata(int i, int x) {
for (; i<=n; i+=i&-i) C[i] += x;
}
int query(int i) {
int ret = 0;
for (; i>0; i-=i&-i) ret += C[i];
return ret;
}
}bsum, bdp; int L[N], R[N]; void DFS(int u, int pa) {
L[u] = tim++;
dep[u] = dep[pa] + 1;
rt[u][0] = pa;
for (auto v: edges[u]) {
if (v == pa) continue;
DFS (v, u);
}
R[u] = tim;
} void DFS(int u) {
sum[u] = 0;
for (auto v: edges[u]) {
if (v == rt[u][0]) continue;
DFS (v);
sum[u] += dp[v];
}
dp[u] = sum[u];
for (auto chain: chains[u]) {
int a = chain.u, b = chain.v, c = chain.w;
int tmp = bsum.query (L[a]) - bdp.query (L[a]) + bsum.query (L[b]) - bdp.query (L[b]);
dp[u] = max (dp[u], sum[u] + tmp + c);
}
bsum.updata (L[u], sum[u]);
bsum.updata (R[u], -sum[u]);
bdp.updata (L[u], dp[u]);
bdp.updata (R[u], -dp[u]);
} void prepare() {
dep[0] = 0;
tim = 1;
DFS (1, 0);
init_LCA ();
bsum.init (n);
bdp.init (n);
} int main() {
int T;
scanf ("%d", &T);
while (T--) {
init ();
scanf ("%d%d", &n, &m);
for (int i=1; i<n; ++i) {
int u, v;
scanf ("%d%d", &u, &v);
edges[u].push_back (v);
edges[v].push_back (u);
} prepare (); for (int i=1; i<=m; ++i) {
int u, v, w;
scanf ("%d%d%d", &u, &v, &w);
int lca = LCA (u, v);
chains[lca].push_back ((Chain) {u, v, w});
} DFS (1);
printf ("%d\n", dp[1]);
}
return 0;
}