问题2. 将附件train.csv 中洪水发生的概率聚类成不同类别,分析具有高、中、低风险的洪水事件的指标特征。然后,选取合适的指标,计算不同指标的权重,建立发生洪水不同风险的预警评价模型,最后进行模型的灵敏度分析
思路:kmeans聚类数量设置为3。多元回归这种就可以得到权重,相当于得到不同指标的概率,选取概率比较高的指标做模型。
2024-07-06 10:15:37
问题2. 将附件train.csv 中洪水发生的概率聚类成不同类别,分析具有高、中、低风险的洪水事件的指标特征。然后,选取合适的指标,计算不同指标的权重,建立发生洪水不同风险的预警评价模型,最后进行模型的灵敏度分析
思路:kmeans聚类数量设置为3。多元回归这种就可以得到权重,相当于得到不同指标的概率,选取概率比较高的指标做模型。