文章目录
- ????Spring 是什么?
- ????什么是IoC呢?
- ????传统程序开发
- ????传统程序开发的缺陷
- ????如何解决传统程序的缺陷?
- ????控制反转式程序开发
- ????对比总结
- ????理解 Spring IoC
- ????DI 概念说明
- ⭕总结
????Spring 是什么?
通过前⾯的学习, 我们知道了Spring是⼀个开源框架, 他让我们的开发更加简单. 他⽀持⼴泛的应⽤场
景, 有着活跃⽽庞⼤的社区, 这也是Spring能够⻓久不衰的原因.
但是这个概念相对来说, 还是⽐较抽象.
我们⽤⼀句更具体的话来概括Spring, 那就是: Spring 是包含了众多⼯具⽅法的 IoC 容器
那问题来了,什么是容器?什么是 IoC 容器?接下来我们⼀起来看
????什么是IoC呢?
Spring 也是⼀个容器,Spring 是什么容器呢?Spring 是⼀个 IoC 容器。
我们想想,之前课程我们接触的容器有哪些?
• List/Map -> 数据存储容器
• Tomcat -> Web 容器
IoC = Inversion of Control 翻译成中⽂是“控制反转”的意思,也就是说 Spring 是⼀个“控制反转”的容器,怎么理解这句话呢,我们先从以下示例开始
接下来我们通过案例来了解⼀下什么是IoC
需求: 造⼀辆⻋
????传统程序开发
我们的实现思路是这样的:
先设计轮⼦(Tire),然后根据轮⼦的⼤⼩设计底盘(Bottom),接着根据底盘设计⻋⾝(Framework),最
后根据⻋⾝设计好整个汽⻋(Car)。这⾥就出现了⼀个"依赖"关系:汽⻋依赖⻋⾝,⻋⾝依赖底盘,底
盘依赖轮⼦.
最终程序的实现代码如下:
public class NewCarExample {
public static void main(String[] args) {
Car car = new Car();
car.run();
}
/**
* 汽⻋对象
*/
static class Car {
private Framework framework;
public Car() {
framework = new Framework();
System.out.println("Car init....");
}
public void run(){
System.out.println("Car run...");
}
}
/**
* ⻋⾝类
*/
static class Framework {
private Bottom bottom;
public Framework() {
bottom = new Bottom();
System.out.println("Framework init...");
}
}
/**
* 底盘类
*/
static class Bottom {
private Tire tire;
public Bottom() {
this.tire = new Tire();
System.out.println("Bottom init...");
}
}
/**
* 轮胎类
*/
static class Tire {
// 尺⼨
private int size;
public Tire(){
this.size = 17;
System.out.println("轮胎尺⼨:" + size);
}
}
}
????传统程序开发的缺陷
这样的设计看起来没问题,但是可维护性却很低.
接下来需求有了变更: 随着对的⻋的需求量越来越⼤, 个性化需求也会越来越多,我们需要加⼯多种尺
⼨的轮胎.
那这个时候就要对上⾯的程序进⾏修改了,修改后的代码如下所⽰:
public class NewCarExample {
public static void main(String[] args) {
Car car = new Car(20);
car.run();
}
/**
* 汽⻋对象
*/
static class Car {
private Framework framework;
public Car(int size) {
framework = new Framework(size);
System.out.println("Car init....");
}
public void run(){
System.out.println("Car run...");
}
}
/**
* ⻋⾝类
*/
static class Framework {
private Bottom bottom;
public Framework(int size) {
bottom = new Bottom(size);
System.out.println("Framework init...");
}
}
/**
* 底盘类
*/
static class Bottom {
private Tire tire;
public Bottom(int size) {
this.tire = new Tire(size);
System.out.println("Bottom init...");
}
}
/**
* 轮胎类
*/
static class Tire {
// 尺⼨
private int size;
public Tire(int size){
this.size = size;
System.out.println("轮胎尺⼨:" + size);
}
}
}
从以上代码可以看出,以上程序的问题是:当最底层代码改动之后,整个调⽤链上的所有代码都需要
修改.
程序的耦合度⾮常⾼(修改⼀处代码, 影响其他处的代码修改)
????如何解决传统程序的缺陷?
我们可以尝试不在每个类中⾃⼰创建下级类,如果⾃⼰创建下级类就会出现当下级类发⽣改变操作,
⾃⼰也要跟着修改.
此时,我们只需要将原来由⾃⼰创建的下级类,改为传递的⽅式(也就是注⼊的⽅式),因为我们不
需要在当前类中创建下级类了,所以下级类即使发⽣变化(创建或减少参数),当前类本⾝也⽆需修
改任何代码,这样就完成了程序的解耦.
解耦指的是解决了代码的耦合性,耦合性也可以换⼀种叫法叫程序相关性。好的程序代码的耦合性(代码之间的相关性)是很低的,也就是代码之间要实现解耦这就好⽐我们打造⼀辆完整的汽⻋,如果所有的配件都是⾃⼰造,那么当客户需求发⽣改变的时候,⽐如轮胎的尺⼨不再是原来的尺⼨了,那我们要⾃⼰动⼿来改了,但如果我们是把轮胎外包出去,那么即使是轮胎的尺⼨发⽣变变了,我们只需要向代理⼯⼚下订单就⾏了,我们⾃身是不需要出⼒的。
????控制反转式程序开发
基于以上思路,我们把调⽤汽⻋的程序示例改造⼀下,把创建⼦类的⽅式,改为注⼊传递的⽅式,具体实现代码如下:class Car
public class IocCarExample {
public static void main(String[] args) {
Tire tire = new Tire(20);
Bottom bottom = new Bottom(tire);
Framework framework = new Framework(bottom);
Car car = new Car(framework);
car.run();
}
static class Car {
private Framework framework;
public Car(Framework framework) {
this.framework = framework;
System.out.println("Car init....");
}
public void run() {
System.out.println("Car run...");
}
}
static class Framework {
private Bottom bottom;
public Framework(Bottom bottom) {
this.bottom = bottom;
System.out.println("Framework init...");
}
}
static class Bottom {
private Tire tire;
public Bottom(Tire tire) {
this.tire = tire;
System.out.println("Bottom init...");
}
}
static class Tire {
private int size;
public Tire(int size) {
this.size = size;
System.out.println("轮胎尺⼨:" + size);
}
}
}
代码经过以上调整,⽆论底层类如何变化,整个调⽤链是不⽤做任何改变的,这样就完成了代码之间
的解耦,从⽽实现了更加灵活、通⽤的程序设计了。
????对比总结
在传统的代码中对象创建顺序是:Car -> Framework -> Bottom -> Tire
改进之后解耦的代码的对象创建顺序是:Tire -> Bottom -> Framework -> Car
我们发现了⼀个规律,通⽤程序的实现代码,类的创建顺序是反的,传统代码是 Car 控制并创建了
Framework,Framework 创建并创建了 Bottom,依次往下,⽽改进之后的控制权发⽣的反转,不再是使⽤⽅对象创建并控制依赖对象了,⽽是把依赖对象注⼊将当前对象中,依赖对象的控制权不再由
当前类控制了.
这样的话, 即使依赖类发⽣任何改变,当前类都是不受影响的,这就是典型的控制反转,也就是 IoC 的实现思想。
学到这⾥, 我们⼤概就知道了什么是控制反转了, 那什么是控制反转容器呢, 也就是IoC容器
????理解 Spring IoC
Spring 是包含了多个⼯具⽅法的 IoC 容器
具备的基础功能:
-
将对象存⼊到容器;
-
从容器中取出对象。
也就是说学 Spring 最核⼼的功能,就是学如何将对象存⼊到 Spring 中,再从 Spring 中获取对象的过程
Spring 是⼀个 IoC 容器,说的是对象的创建和销毁的权利都交给 Spring 来管理了,它本身⼜具备了存储对象和获取对象的能⼒
从上⾯也可以看出来, ==IoC容器具备以下优点:
资源不由使⽤资源的双⽅管理,⽽由不使⽤资源的第三⽅管理,这可以带来很多好处。第⼀,资源集
中管理,实现资源的可配置和易管理。第⼆,降低了使⽤资源双⽅的依赖程度,也就是我们说的耦合
度。
- 资源集中管理: IoC容器会帮我们管理⼀些资源(对象等), 我们需要使⽤时, 只需要从IoC容器中去取
就可以了 - 我们在创建实例的时候不需要了解其中的细节, 降低了使⽤资源双⽅的依赖程度, 也就是耦合度.
????DI 概念说明
说到 IoC 不得不提的⼀个词就是“DI”,DI 是 Dependency Injection 的缩写,翻译成中⽂是“依赖注⼊”的意思。
所谓依赖注⼊,就是由 IoC 容器在运⾏期间,动态地将某种依赖关系注⼊到对象之中。所以,依赖注⼊(DI)和控制反转(IoC)是从不同的⻆度的描述的同⼀件事情,就是指通过引⼊ IoC 容器,利⽤依赖关系注⼊的⽅式,实现对象之间的解耦。
IoC 是“⽬标”也是⼀种思想,⽽⽬标和思想只是⼀种指导原则,最终还是要有可⾏的落地⽅案,⽽ DI就属于具体的实现
⭕总结
感谢大家的阅读,希望得到大家的批评指正,和大家一起进步,与君共勉!