机器学习-随机森林温度预测模型优化-前言

机器学习-随机森林算法预测温度一文中,通过增大模型训练数据集和训练特征的方式去优化模型的性能,本文将记录第三方种优化方式,通过调整随机森林创建模型参数的方式去优化模型,即调参。这里调参和神经网络使用验证集调整超参数概念不太一样,所以不会去使用验证集。本文调参,将使用RandomizedSearchCV()函数,去交叉验证不同参数组合的模型性能,选择最优性能的参数组合模型。

上一篇:JSON基础入门


下一篇:Hive-技术补充-ANTLR的真实语法世界