大意: 给定$4n$个$m$位的五进制数, $q$个询问, 每个询问给出一个$m$位的五进制数$b$, 求有多少种选数方案可以使五进制异或和为$b$.
高斯消元入门题
每次询问相当于就是给定了$m$个式子组成的模$5$的方程组, 求解的个数
如果消元后询问某一位非零, 但是对应系数矩阵全零, 那么无解
否则解的个数是$5^{n-r}$
$q$组询问的话, 就增广$q$列, 同时解$q$个方程组即可.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 510; int n, m, q, A[N][2*N], in[N]; char s[N]; int main() { REP(i,0,4) in[i]=i*i*i%5; scanf("%d%d", &n, &m); REP(i,1,n) { scanf("%s",s+1); REP(j,1,m) A[j][i]=s[j]-'a'; } scanf("%d", &q); REP(i,1,q) { scanf("%s",s+1); REP(j,1,m) A[j][i+n]=s[j]-'a'; } int r = 0; REP(i,1,n) { int p = r; while (!A[p][i]&&p<=m) ++p; if (p>m) continue; if (p!=r) REP(j,1,n+q) swap(A[p][j],A[r][j]); REP(j,1,m) if (j!=r&&A[j][i]) { int t = A[j][i]*in[A[r][i]]%5; REP(k,i,n+q) A[j][k]=(A[j][k]-t*A[r][k]+25)%5; } ++r; } REP(i,1,q) { int ans = qpow(5,n-r); REP(j,1,m) if (A[j][i+n]) { int ok = 0; REP(k,1,n) if (A[j][k]) ok = 1; if (!ok) ans = 0; } printf("%d\n",ans); } }