给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉搜索树中。
解题思路
在方法一中,我们对从根节点开始,通过遍历找出到达节点 p 和 q 的路径,一共需要两次遍历。我们也可以考虑将这两个节点放在一起遍历。
整体的遍历过程与方法一中的类似:
-
我们从根节点开始遍历;
-
如果当前节点的值大于 p 和 q 的值,说明 p 和 q 应该在当前节点的左子树,因此将当前节点移动到它的左子节点;
-
如果当前节点的值小于 p 和 q 的值,说明 p 和 q 应该在当前节点的右子树,因此将当前节点移动到它的右子节点;
-
如果当前节点的值不满足上述两条要求,那么说明当前节点就是「分岔点」。此时,p 和 q 要么在当前节点的不同的子树中,要么其中一个就是当前节点。
代码
// 235. 二叉搜索树的最近公共祖先
func lowestCommonAncestor(_ root: TreeNode?, _ p: TreeNode?, _ q: TreeNode?) -> TreeNode? {
var ancestor = root
while true {
if p?.val ?? 0 < ancestor?.val ?? 0 && q?.val ?? 0 < ancestor?.val ?? 0 {
ancestor = ancestor?.left
} else if p?.val ?? 0 > ancestor?.val ?? 0 && q?.val ?? 0 > ancestor?.val ?? 0 {
ancestor = ancestor?.right
} else {
break
}
}
return ancestor
}