Zookeeper 分步式锁案例

文章目录

需求分析

什么叫做分布式锁呢?

比如说"进程 1"在使用该资源的时候,会先去获得锁,"进程 1"获得锁以后会对该资源保持独占,这样其他进程就无法访问该资源,"进程 1"用完该资源以后就将锁释放掉,让其他进程来获得锁,那么通过这个锁机制,我们就能保证了分布式系统中多个进程能够有序的访问该临界资源。那么我们把这个分布式环境下的这个锁叫作分布式锁。

Zookeeper 分步式锁案例
最小的编号优先拿到锁。

CountDownLatch概念

CountDownLatch是一个同步工具类,用来协调多个线程之间的同步,或者说起到线程之间的通信(而不是用作互斥的作用)。

CountDownLatch能够使一个线程在等待另外一些线程完成各自工作之后,再继续执行。使用一个计数器进行实现。计数器初始值为线程的数量。当每一个线程完成自己任务后,计数器的值就会减一。当计数器的值为0时,表示所有的线程都已经完成一些任务,然后在CountDownLatch上等待的线程就可以恢复执行接下来的任务。

CountDownLatch的用法

CountDownLatch典型用法:1、某一线程在开始运行前等待n个线程执行完毕。将CountDownLatch的计数器初始化为new CountDownLatch(n),每当一个任务线程执行完毕,就将计数器减1 countdownLatch.countDown(),当计数器的值变为0时,在CountDownLatch上await()的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。

CountDownLatch典型用法:2、实现多个线程开始执行任务的最大并行性。注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的CountDownLatch(1),将其计算器初始化为1,多个线程在开始执行任务前首先countdownlatch.await(),当主线程调用countDown()时,计数器变为0,多个线程同时被唤醒。

原生 Zookeeper 实现分布式锁案例

1)分布式锁实现

DistributedLock类

package com.huan.zkcase2;

import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;

import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;

public class DistributedLock {

    private final String connectString = "Bigdata04:2181,Bigdata05:2181,Bigdata06:2181";
    private final int sessionTimeout = 2000;
    private final ZooKeeper zk;

    private CountDownLatch connectLatch = new CountDownLatch(1);
    private CountDownLatch waitLatch = new CountDownLatch(1);

    private String waitPath;
    private String currentMode;

    public DistributedLock() throws IOException, InterruptedException, KeeperException {

        // 获取连接
        zk = new ZooKeeper(connectString, sessionTimeout, new Watcher() {
            @Override
            public void process(WatchedEvent watchedEvent) {
                // connectLatch  如果连接上zk  可以释放
                if (watchedEvent.getState() == Event.KeeperState.SyncConnected){
                    connectLatch.countDown();
                }

                // waitLatch  需要释放 (如果是单节点,而且还是当前的节点前一个节点)
                if (watchedEvent.getType()== Event.EventType.NodeDeleted && watchedEvent.getPath().equals(waitPath)){
                    waitLatch.countDown();
                }
            }
        });

        // 等待zk正常连接后,往下走程序
        connectLatch.await();

        // 判断根节点/locks是否存在
        Stat stat = zk.exists("/locks", false);

        if (stat == null) {
            // 创建一下根节点
            zk.create("/locks", "locks".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
        }
    }

    // 对zk加锁
    public void zklock() {
        // 创建对应的临时带序号节点
        try {
            currentMode = zk.create("/locks/" + "seq-", null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);

            // wait一小会, 让结果更清晰一些
            Thread.sleep(10);

            // 判断创建的节点是否是最小的序号节点,如果是获取到锁;如果不是,监听他序号前一个节点

            List<String> children = zk.getChildren("/locks", false);

            // 如果children 只有一个值,那就直接获取锁; 如果有多个节点,需要判断,谁最小
            if (children.size() == 1) {
                return;
            } else {
                Collections.sort(children);

                // 获取节点名称 seq-00000000
                String thisNode = currentMode.substring("/locks/".length());
                // 通过seq-00000000获取该节点在children集合的位置
                int index = children.indexOf(thisNode);

                // 判断
                if (index == -1) {
                    System.out.println("数据异常");
                } else if (index == 0) {
                    // 就一个节点,可以获取锁了
                    return;
                } else {
                    // 需要监听  他前一个节点变化
                    waitPath = "/locks/" + children.get(index - 1);
                    zk.getData(waitPath,true,new Stat());

                    // 等待监听
                    waitLatch.await();

                    return;
                }
            }
            
        } catch (KeeperException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    // 解锁
    public void unZkLock() {

        // 删除节点
        try {
            zk.delete(this.currentMode,-1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }
}

2)分布式锁测试

DistributedLockTest类

package com.huan.zkcase2;

import org.apache.zookeeper.KeeperException;

import java.io.IOException;

public class DistributedLockTest {

    public static void main(String[] args) throws InterruptedException, IOException, KeeperException {

       final  DistributedLock lock1 = new DistributedLock();

        final  DistributedLock lock2 = new DistributedLock();

       new Thread(new Runnable() {
           @Override
           public void run() {
               try {
                   lock1.zklock();
                   System.out.println("线程1 启动,获取到锁");
                   Thread.sleep(5 * 1000);

                   lock1.unZkLock();
                   System.out.println("线程1 释放锁");
               } catch (InterruptedException e) {
                   e.printStackTrace();
               }
           }
       }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {

                try {
                    lock2.zklock();
                    System.out.println("线程2 启动,获取到锁");
                    Thread.sleep(5 * 1000);

                    lock2.unZkLock();
                    System.out.println("线程2 释放锁");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

Curator 框架实现分布式锁案例

1)原生的 Java API 开发存在的问题
(1)会话连接是异步的,需要自己去处理。比如使用 CountDownLatch
(2)Watch 需要重复注册,不然就不能生效
(3)开发的复杂性还是比较高的
(4)不支持多节点删除和创建。需要自己去递归

2)Curator 是一个专门解决分布式锁的框架,解决了原生 JavaAPI 开发分布式遇到的问题。

详情请查看官方文档:https://curator.apache.org/index.html

3)Curator 案例实操
(1)添加依赖

		<dependency>
            <groupId>org.apache.curator</groupId>
            <artifactId>curator-framework</artifactId>
            <version>4.3.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.curator</groupId>
            <artifactId>curator-recipes</artifactId>
            <version>4.3.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.curator</groupId>
            <artifactId>curator-client</artifactId>
            <version>4.3.0</version>
        </dependency>

(2)代码实现

package com.huan.zkcase3;

import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.locks.InterProcessMutex;
import org.apache.curator.retry.ExponentialBackoffRetry;

public class CuratorLockTest {

    public static void main(String[] args) {

        // 创建分布式锁1
        InterProcessMutex lock1 = new InterProcessMutex(getCuratorFramework(), "/locks");

        // 创建分布式锁2
        InterProcessMutex lock2 = new InterProcessMutex(getCuratorFramework(), "/locks");

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    lock1.acquire();
                    System.out.println("线程1 获取到锁");

                    lock1.acquire();
                    System.out.println("线程1 再次获取到锁");

                    Thread.sleep(5 * 1000);

                    lock1.release();
                    System.out.println("线程1 释放锁");

                    lock1.release();
                    System.out.println("线程1  再次释放锁");

                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    lock2.acquire();
                    System.out.println("线程2 获取到锁");

                    lock2.acquire();
                    System.out.println("线程2 再次获取到锁");

                    Thread.sleep(5 * 1000);

                    lock2.release();
                    System.out.println("线程2 释放锁");

                    lock2.release();
                    System.out.println("线程2  再次释放锁");

                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }

    // 分布式锁初始化
    private static CuratorFramework getCuratorFramework() {

        //重试策略,初试时间 3 秒,重试 3 次
        ExponentialBackoffRetry policy = new ExponentialBackoffRetry(3000, 3);

        //通过工厂创建 Curator
        CuratorFramework client = CuratorFrameworkFactory.builder().connectString("Bigdata04:2181,Bigdata05:2181,Bigdata06:2181")
                .connectionTimeoutMs(2000)
                .sessionTimeoutMs(2000)
                .retryPolicy(policy).build();

        // 启动客户端
        client.start();

        System.out.println("zookeeper 启动成功");
        return client;
    }
}

讲一下,这一块有点难,触碰知识盲区了,过两三个月还会回来继续深入一下这一块。

上一篇:Java并发编程之CountDownLatch/CyclicBarrierDemo/SemaphoreDemo详解


下一篇:你觉得我的这段Java代码还有优化的空间吗?