数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

Prime Test
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 29046   Accepted: 7342
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2

Source

 

Mean:

略。

analyse:

输入的n很大,我们不可能再用筛法来求素数,这时Miller_Rabin算法就显得尤为重要。

若n不是素数,需要进行质因数分解,同样的问题,n很大,我们不可能用试除法来进行质因数分解,那样必会tle。这时就必须使用pollard_rho算法来进行质因数分解。

其实Miller_Rabin算法和pollard_rho算法很多时候是组合在一起用的。

Time complexity:O(n)  一般情况下是O(n)

Source code:

//Memory   Time
// 1347K 0MS
// by : Snarl_jsb
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<string>
#include<climits>
#include<cmath>
#define N 1000010
#define LL long long
using namespace std; //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20; //随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=0;
while(b)
{
if(b&1){ret+=a;ret%=c;}
a<<=1;
if(a>=c)a%=c;
b>>=1;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==1)return x%mod;
x%=mod;
long long tmp=x;
long long ret=1;
while(n)
{
if(n&1) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=1;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=1;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==1&&last!=1&&last!=n-1) return true;//合数
last=ret;
}
if(ret!=1) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<2)return false;
if(n==2)return true;
if((n&1)==0) return false;//偶数
long long x=n-1;
long long t=0;
while((x&1)==0){x>>=1;t++;}
for(int i=0;i<S;i++)
{
long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==0)return 1;
if(a<0) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=1,k=2;
long long x0=rand()%x;
long long y=x0;
while(1)
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=1&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
findfac(p);
findfac(n/p);
} int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
long long t;
cin>>t;
while(t--)
{
scanf("%I64d",&n);
if(n==1) continue;
if(Miller_Rabin(n))printf("Prime\n");
else
{
tol=0;
findfac(n);
long long minn=INT_MAX;
for(int i=0;i<tol;i++)
{
if(factor[i]<minn)
{
minn=factor[i];
}
}
printf("%I64d\n",minn);
}
}
return 0;
}

  

上一篇:Miller_Rabin(米勒拉宾)素数测试算法


下一篇:Miller Rabin 大素数测试