1、HDU 1907
2、题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输。
3、总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门
分析:经典的Nim博弈的一点变形。设糖果数为1的叫孤独堆,糖果数大于1的叫充裕堆,设状态S0:a1^a2^..an!=0&&充裕堆=0,则先手必败(奇数个为1的堆,先手必败)。S1:充裕堆=1,则先手必胜(若剩下的n-1个孤独堆个数为奇数个,那么将那个充裕堆全部拿掉,否则将那个充裕堆拿得只剩一个,这样的话先手必胜)。T0:a1^a2^..an=0&&充裕堆=0,先手必胜(只有偶数个孤独堆,先手必胜)。S2:a1^a2^..an!=0&&充裕堆>=2。T2:a1^a2^..an=0&&充裕堆>=2。这样的话我们用S0,S1,S2,T0,T2将所有状态全部表示出来了,并且S0先手必败,S1、T0先手必胜,那么我们只需要对S2和T2的状态进行分析就行了。(a)S2可以取一次变为T2。(b)T2取一次可变为S2或者S1。因为S1是先手必胜态,那么根据a,b这两个转换规则,我们就能得知S2也是先手必胜,T2是先手必败。
#include<bits/stdc++.h>
#define F(i,a,b) for (int i=a;i<b;i++)
#define FF(i,a,b) for (int i=a;i<=b;i++)
#define mes(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int N=; int main()
{
int T,n,a[];
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
int ans=,flag=;
F(i,,n) {
scanf("%d",&a[i]);
ans^=a[i];
if(a[i]!=) flag=; //全部为1就要特判
}
if(flag) {
if(!ans) puts("Brother");
else puts("John");
} else {
if(ans^==) puts("John");
else puts("Brother");
}
} return ;
}