说实话,去一家小公司从 0 到 1 搭建后端架构,真难~

说实话,去一家小公司从 0 到 1 搭建后端架构,真难~

来源:zhu327.github.io/2018/07/19/python后端架构演进/

  • 1. MVC
  • 2. 服务拆分
  • 3. 微服务架构
  • 4. 领域驱动设计
  • 总结


来腾讯之前在前公司做了3年的后端开发, 经历一款SaaS产品从0到10(还没有到100, 哈哈哈)的过程, 3年间后端的架构逐步演变, 在微服务的实践过程中遇到的问题也越来越多, 在这里总结下.

产品是一款服务于人力资源的SaaS在线服务, 面向HR有Web Android/iOS 小程序多个客户端, 后端采用RESTful风格API来提供服务. 主要使用Python语言, 方便快速迭代.

架构的演进经历了4个大的阶段: 1. MVC 2. 服务拆分 3. 微服务架构 4. 领域驱动设计.

1. MVC

项目刚开始的时候, 后端同事不超过5个, 这个阶段主要的工作是实现产品的原型, 没有太多的考虑架构, 使用Django来快速实现功能, DB的表结构设计好之后, 抽象出功能View, 由于产品设计也很不完善, 后端需要很多的预留设计, 避免产品逻辑的变更带来整个表结构的变动, 在这个阶段代码上最重要的是确定适合团队的代码规范, 代码检查规则.

说实话,去一家小公司从 0 到 1 搭建后端架构,真难~

整体上架构如上图, Nginx负责负载均衡, 分发流量到多个Django服务, Django处理逻辑, 需要异步任务就交给Celery, 然后数据量比较大的地方使用Redis做缓存. 同时还有实时消息通知的需要使用了Nginx Push Module.

问题与优化方式:

  1. Django并发性能差 使用uWSGI Master+Worker 配合 gevent 携程支持高并发
  2. Redis连接数过多 使用redis-py自带的连接池来实现连接复用
  3. MySQL连接数过多 使用djorm-ext-pool连接池复用连接
  4. Celery配置gevent支持并发任务

随着开发的功能越来越多, Django下的app也越来越多, 这就带了发布上的不方便, 每次发布版本都需要重启所有的Django服务, 如果发布遇到问题, 只能加班解决了. 而且单个Django工程下的代码量也越来越多, 不好维护.

2. 服务拆分

随着后端团队的壮大, 分给每个同事的需求也越来越细, 如果继续在一个工程里面开发所有的代码, 维护起来的代价太高, 而我们的上一个架构中在Django里面已经按模块划分了一个个app, app内高类聚, app之间低耦合, 这就为服务的拆分带来了便利. 拆分的过程没有遇到太大的问题, 初期的拆分只是代码的分离, 把公用的代码抽离出来实现一个公用的Python库, 数据库, Redis还是共用, 随着负载的增加, 数据库也做了多实例.

说实话,去一家小公司从 0 到 1 搭建后端架构,真难~

如上图, 服务之间尽量避免相互调用, 需要交互的地方采用http请求的方式, 内网的调用使用hosts指向内网地址.

问题与优化方式:

  • Nginx Push Module由于长时间没有维护, 长连接最大数量不够, 使用Tornado + ZeroMQ实现了tormq服务来支撑消息通知

服务之间的调用采用http的方式, 并且要求有依赖的服务主机配置hosts指向被调用的地址, 这样带来的维护上的不方便. 以及在调用链的过程中没有重试, 错误处理, 限流等等的策略, 导致服务可用性差. 随着业务拆分, 继续使用Nginx维护配置非常麻烦, 经常因为修改Nginx的配置引发调用错误. 每一个服务都有一个完整的认证过程, 认证又依赖于用户中心的数据库, 修改认证时需要重新发布多个服务.

3. 微服务架构

说实话,去一家小公司从 0 到 1 搭建后端架构,真难~

首先是在接入层引入了基于OpenResty的Kong API Gateway, 定制实现了认证, 限流等插件. 在接入层承接并剥离了应用层公共的认证, 限流等功能. 在发布新的服务时, 发布脚本中调用Kong admin api注册服务地址到Kong, 并加载api需要使用插件.

为了解决相互调用的问题, 维护了一个基于gevent+msgpack的RPC服务框架doge, 借助于etcd做服务治理, 并在rpc客户端实现了限流, 高可用, 负载均衡这些功能.

在这个阶段最难的技术选型, 开源的API网关大多用Golang与OpenResty(lua)实现, 为了应对我们业务的需要还要做定制. 前期花了1个月时间学习OpenResty与Golang, 并使用OpenResty实现了一个短网址服务shorturl用在业务中. 最终选择Kong是基于Lua发布的便利性, Kong的开箱即用以及插件开发比较容易. 性能的考量倒不是最重要的, 为了支撑更多的并发, 还使用了云平台提供的LB服务分发流量到2台Kong服务器组成的集群. 集群之间自动同步配置.

饿了么维护一个纯Python实现的thrift协议框架thriftpy, 并提供很多配套的工具, 如果团队足够大, 这一套RPC方案其实是合适的, 但是我们的团队人手不足, 水平参差不齐, 很难推广这一整套学习成本高昂的方案. 最终我们开发了类Duboo的RPC框架doge, 代码主要参考了weibo开源的motan.

4. 领域驱动设计

说实话,去一家小公司从 0 到 1 搭建后端架构,真难~

在这一架构中我们尝试从应用服务中抽离出数据服务层, 每一个数据服务包含一个或多个界限上下文, 界限上下文类只有一个聚合根来暴露出RPC调用的方法. 数据服务不依赖于应用服务, 应用服务可以依赖多个数据服务. 有了数据服务层, 应用就解耦了相互之间的依赖, 高层服务只依赖于底层服务.

在我离职时领域驱动设计还在学习设计阶段, 还没有落地, 但是我相信前公司的后端架构一定会往这个方向继续演进.

总结

架构的设计, 技术的选型, 不能完全按照流行的技术走, 最终还是服务于产品, 服务于客户的需求. 设计过程中由于团队, 人员的结构问题, 有很多的妥协之处, 如何在妥协中找到最优解才是最大的挑战.

Service Mesh这种新一代的微服务架构正在成为主流, 虽然现在的工作与微服务无关了, 但是也还会继续关注学习.

说实话,去一家小公司从 0 到 1 搭建后端架构,真难~

上一篇:物联网网关神器 Kong ( 三 ) - 图形化管理界面 Konga


下一篇:API网关自定义插件