kafka+storm结合存在的一些问题与解决方法

在配置kafka和storm的时候, 经常的会出现一些问题, 主要在以下几个:

  1.  打jar包上去storm集群的时候会出现jar包冲突,类似于log4j或者sf4j的报错信息.

  2. kafka本地Java生产者和消费者无法消费数据

  3. kafkaSpout的declareFields到底是什么

  下面我们结合kafka_2.11-0.10.1.0 + apache-storm-1.1.0来详细的说明这三个问题.

  1.  打jar包上去storm集群的时候会出现jar包冲突,类似于log4j或者sf4j的报错信息.

SLF4J: Detected both log4j-over-slf4j.jar AND slf4j-log4j12.jar on the class path, preempting *Error. SLF4J: See also http://www.slf4j.org/codes.html#log4jDelegationLoop for more details.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 5370 [Thread-14-newKafka] ERROR backtype.storm.util - Async loop died! java.lang.NoClassDefFoundError: Could not initialize class org.apache.log4j.Log4jLoggerFactory     at org.apache.log4j.Logger.getLogger(Logger.java:39) ~[log4j-over-slf4j-1.6.6.jar:1.6.6]     at kafka.utils.Logging$class.logger(Logging.scala:24) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.consumer.SimpleConsumer.logger$lzycompute(SimpleConsumer.scala:30) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.consumer.SimpleConsumer.logger(SimpleConsumer.scala:30) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.utils.Logging$class.info(Logging.scala:67) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.consumer.SimpleConsumer.info(SimpleConsumer.scala:30) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:74) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:68) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:127) ~[kafka_2.10-0.8.2.1.jar:na]     at kafka.javaapi.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:79) ~[kafka_2.10-0.8.2.1.jar:na]     at storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:77) ~[storm-kafka-0.9.3.jar:0.9.3]     at storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:67) ~[storm-kafka-0.9.3.jar:0.9.3]     at storm.kafka.PartitionManager.<init>(PartitionManager.java:83) ~[storm-kafka-0.9.3.jar:0.9.3]     at storm.kafka.ZkCoordinator.refresh(ZkCoordinator.java:98) ~[storm-kafka-0.9.3.jar:0.9.3]     at storm.kafka.ZkCoordinator.getMyManagedPartitions(ZkCoordinator.java:69) ~[storm-kafka-0.9.3.jar:0.9.3]     at storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:135) ~[storm-kafka-0.9.3.jar:0.9.3]     at backtype.storm.daemon.executor$fn__3373$fn__3388$fn__3417.invoke(executor.clj:565) ~[storm-core-0.9.3.jar:0.9.3]     at backtype.storm.util$async_loop$fn__464.invoke(util.clj:463) ~[storm-core-0.9.3.jar:0.9.3]     at clojure.lang.AFn.run(AFn.java:24) [clojure-1.5.1.jar:na]     at java.lang.Thread.run(Thread.java:744) [na:1.7.0_45]

  原因:KafkaSpout 代码里(storm.kafka.KafkaSpout)使用了 slf4j 的包,而 Kafka 系统本身(kafka.consumer.SimpleConsumer)却使用了 apache 的包.

  解决办法:在依赖定义中去除问题依赖包

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <dependency>      <groupId>org.apache.kafka</groupId>      <artifactId>kafka_2.10</artifactId>      <version>0.10.1.1</version>      <exclusions>        <exclusion>          <groupId>org.apache.zookeeper</groupId>          <artifactId>zookeeper</artifactId>        </exclusion>        <exclusion>          <groupId>org.slf4j</groupId>          <artifactId>slf4j-log4j12</artifactId>        </exclusion>        <exclusion>          <groupId>log4j</groupId>          <artifactId>log4j</artifactId>        </exclusion>      </exclusions>    </dependency>

  还有类似于zk和kafkaClient包冲突的情况:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 7630 [Thread-16-spout-executor[3 3]] INFO  o.a.s.k.PartitionManager - Read partition information from: /test-topic/04680174-656f-41ad-ad6f-2976d28b2d24/partition_0  --> null 7663 [Thread-16-spout-executor[3 3]] INFO  k.c.SimpleConsumer - Reconnect due to error: java.lang.NoSuchMethodError: org.apache.kafka.common.network.NetworkSend.<init>(Ljava/lang/String;[Ljava/nio/ByteBuffer;)V         at kafka.network.RequestOrResponseSend.<init>(RequestOrResponseSend.scala:41) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.network.RequestOrResponseSend.<init>(RequestOrResponseSend.scala:44) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.network.BlockingChannel.send(BlockingChannel.scala:112) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:85) [kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:83) [kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:149) [kafka_2.11-0.10.0.1.jar:?]         at kafka.javaapi.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:79) [kafka_2.11-0.10.0.1.jar:?]         at org.apache.storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:75) [storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:65) [storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.PartitionManager.<init>(PartitionManager.java:103) [storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.ZkCoordinator.refresh(ZkCoordinator.java:98) [storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.ZkCoordinator.getMyManagedPartitions(ZkCoordinator.java:69) [storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:129) [storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.daemon.executor$fn__7990$fn__8005$fn__8036.invoke(executor.clj:648) [storm-core-1.0.2.jar:1.0.2]         at org.apache.storm.util$async_loop$fn__624.invoke(util.clj:484) [storm-core-1.0.2.jar:1.0.2]         at clojure.lang.AFn.run(AFn.java:22) [clojure-1.7.0.jar:?]         at java.lang.Thread.run(Unknown Source) [?:1.8.0_111] 7672 [Thread-16-spout-executor[3 3]] ERROR o.a.s.util - Async loop died! java.lang.NoSuchMethodError: org.apache.kafka.common.network.NetworkSend.<init>(Ljava/lang/String;[Ljava/nio/ByteBuffer;)V         at kafka.network.RequestOrResponseSend.<init>(RequestOrResponseSend.scala:41) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.network.RequestOrResponseSend.<init>(RequestOrResponseSend.scala:44) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.network.BlockingChannel.send(BlockingChannel.scala:112) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:98) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:83) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:149) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.javaapi.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:79) ~[kafka_2.11-0.10.0.1.jar:?]         at org.apache.storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:75) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:65) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.PartitionManager.<init>(PartitionManager.java:103) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.ZkCoordinator.refresh(ZkCoordinator.java:98) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.ZkCoordinator.getMyManagedPartitions(ZkCoordinator.java:69) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:129) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.daemon.executor$fn__7990$fn__8005$fn__8036.invoke(executor.clj:648) ~[storm-core-1.0.2.jar:1.0.2]         at org.apache.storm.util$async_loop$fn__624.invoke(util.clj:484) [storm-core-1.0.2.jar:1.0.2]         at clojure.lang.AFn.run(AFn.java:22) [clojure-1.7.0.jar:?]         at java.lang.Thread.run(Unknown Source) [?:1.8.0_111] 7673 [Thread-16-spout-executor[3 3]] ERROR o.a.s.d.executor - java.lang.NoSuchMethodError: org.apache.kafka.common.network.NetworkSend.<init>(Ljava/lang/String;[Ljava/nio/ByteBuffer;)V         at kafka.network.RequestOrResponseSend.<init>(RequestOrResponseSend.scala:41) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.network.RequestOrResponseSend.<init>(RequestOrResponseSend.scala:44) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.network.BlockingChannel.send(BlockingChannel.scala:112) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:98) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:83) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:149) ~[kafka_2.11-0.10.0.1.jar:?]         at kafka.javaapi.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:79) ~[kafka_2.11-0.10.0.1.jar:?]         at org.apache.storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:75) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.KafkaUtils.getOffset(KafkaUtils.java:65) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.PartitionManager.<init>(PartitionManager.java:103) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.ZkCoordinator.refresh(ZkCoordinator.java:98) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.ZkCoordinator.getMyManagedPartitions(ZkCoordinator.java:69) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:129) ~[storm-kafka-1.0.2.jar:1.0.2]         at org.apache.storm.daemon.executor$fn__7990$fn__8005$fn__8036.invoke(executor.clj:648) ~[storm-core-1.0.2.jar:1.0.2]         at org.apache.storm.util$async_loop$fn__624.invoke(util.clj:484) [storm-core-1.0.2.jar:1.0.2]         at clojure.lang.AFn.run(AFn.java:22) [clojure-1.7.0.jar:?]         at java.lang.Thread.run(Unknown Source) [?:1.8.0_111] 7694 [Thread-16-spout-executor[3 3]] ERROR o.a.s.util - Halting process: ("Worker died") java.lang.RuntimeException: ("Worker died")         at org.apache.storm.util$exit_process_BANG_.doInvoke(util.clj:341) [storm-core-1.0.2.jar:1.0.2]         at clojure.lang.RestFn.invoke(RestFn.java:423) [clojure-1.7.0.jar:?]         at org.apache.storm.daemon.worker$fn__8659$fn__8660.invoke(worker.clj:761) [storm-core-1.0.2.jar:1.0.2]         at org.apache.storm.daemon.executor$mk_executor_data$fn__7875$fn__7876.invoke(executor.clj:274) [storm-core-1.0.2.jar:1.0.2]         at org.apache.storm.util$async_loop$fn__624.invoke(util.clj:494) [storm-core-1.0.2.jar:1.0.2]         at clojure.lang.AFn.run(AFn.java:22) [clojure-1.7.0.jar:?]         at java.lang.Thread.run(Unknown Source) [?:1.8.0_111]

  原因:org.apache.kafka.common.network.NetworkSend 是一个Kafka客户端库,kafka 0.9以前,首先初始化这个类,pom.xml中未显示的声明Kafka-clients,故导致错误。

    解决办法:加入Kafka-clients依赖.请参照以上的解决方法, 可以用eclipse去找冲突的包.

kafka+storm结合存在的一些问题与解决方法

2. kafka本地Java生产者和消费者无法消费数据

  这个问题一定要强调一下, 因为之前踩坑的时候的确很恼火, 明明在虚拟机里面是可以生产和消费的, 但是本地的JavaApi却始终无法访问.后来不经意间发现说要修改hosts文件.

  本地的JavaApi如果hosts文件没有相关的ip地址是不会调通的.

  kafka+storm结合存在的一些问题与解决方法

  另外, 需要在虚拟机的host文件里面加上172.16.11.224 kafka01.

  将server.config里面的配置改成advertised.listeners=PLAINTEXT://kafka01:9092

 

3. kafkaSpout的declareFields到底是什么

  这个最开始是在一个kafka+storm热力图项目看到的, 老师根据查看kafkaSpout的源码发现它发送到下一层bolt的时候fileds的名称是bytes.

  

kafka+storm结合存在的一些问题与解决方法
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.storm.spout;

import java.nio.ByteBuffer;
import java.util.List;

import org.apache.storm.tuple.Fields;
import org.apache.storm.utils.Utils;


import static org.apache.storm.utils.Utils.tuple;
import static java.util.Arrays.asList;

public class RawMultiScheme implements MultiScheme {
  @Override
  public Iterable<List<Object>> deserialize(ByteBuffer ser) {
    return asList(tuple(Utils.toByteArray(ser)));
  }

  @Override
  public Fields getOutputFields() {
    return new Fields("bytes");
  }
}
kafka+storm结合存在的一些问题与解决方法

 

  而且分组的方法的也是shuffleGrouping, 这就为难了, 假如我想要在spout开始就按照fields分组呢? 或者在接收的时候不需要bytes字节而是自定义的格式呢?

  这个时候就要更改kafkaSpout的源码和PartitionManager的相关代码了.

kafka+storm结合存在的一些问题与解决方法

   kafka+storm结合存在的一些问题与解决方法

   在这里也补充一个问题, 就是kafkaSpout有很多配置需要定.

  通过SpoutConfig对象的startOffsetTime字段设置消费进度,默认值是kafka.api.OffsetRequest.EarliestTime(),也就是从最早的消息开始消费,如果想从最新的消息开始消费需要手动设置成kafka.api.OffsetRequest.LatestTime()。另外还有一个问题是,这个字段只会在第一次消费消息时起作用,之后消费的offset是从zookeeper中记录的offset开始的(存放消费记录的地方是SpoutConfig对象的zkroot字段,未验证)

  如果想要当前的topology的消费进度接着上一个topology的消费进度继续消费,那么不要修改SpoutConfig对象的id。换言之,如果你第一次已经从最早的消息开始消费了,那么如果不换id的话,它就要从最早的消息一直消费到最新的消息,这个时候如果想要跳过中间的消息直接从最新的消息开始消费,那么修改SpoutConfig对象的id就可以了

  下面是SpoutConfig对象的一些字段的含义,其实是继承的KafkaConfig的字段,可看源码

 

kafka+storm结合存在的一些问题与解决方法
public int fetchSizeBytes = 1024 * 1024; //发给Kafka的每个FetchRequest中,用此指定想要的response中总的消息的大小
public int socketTimeoutMs = 10000;//与Kafka broker的连接的socket超时时间
public int fetchMaxWait = 10000; //当服务器没有新消息时,消费者会等待这些时间 public int bufferSizeBytes = 1024 * 1024;//SimpleConsumer所使用的SocketChannel的读缓冲区大小 public MultiScheme scheme = new RawMultiScheme();//从Kafka中取出的byte[],该如何反序列化 public boolean forceFromStart = false;//是否强制从Kafka中offset最小的开始读起 public long startOffsetTime = kafka.api.OffsetRequest.EarliestTime();//从何时的offset时间开始读,默认为最旧的offset public long maxOffsetBehind = Long.MAX_VALUE;//KafkaSpout读取的进度与目标进度相差多少,相差太多,Spout会丢弃中间的消息 public boolean useStartOffsetTimeIfOffsetOutOfRange = true;//如果所请求的offset对应的消息在Kafka中不存在,是否使用startOffsetTime
public int metricsTimeBucketSizeInSecs = 60;//多长时间统计一次metrics
kafka+storm结合存在的一些问题与解决方法

 

 

 

上一篇:大数据处理基本过程


下一篇:Java多线程同步 synchronized 关键字的使用