Reinforcement Learning
post by ISH GIRWAN
Courses/Tutorials
- Deep Reinforcement Learning, Spring 2017, by UC Berkeley: http://rll.berkeley.edu/deeprlcours...
- Reinforcement Learning, 2015, by UCL (David Siver): http://www0.cs.ucl.ac.uk/staff/d.si...
- https://github.com/yandexdataschool...
- Lecture notes by Andrew Ng: http://cs229.stanford.edu/notes/cs2...
- https://medium.com/emergent-future/...
Books
- Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto: http://webdocs.cs.ualberta.ca/~sutt...
Blogs
I think you can take the UC Berkeley course instead of David Silver's course as it's more up to date. Additionally you can check Arthur Juliani's blog series, it's really good.
相关课程
Calculus One, Coursera, Jim Fowler
Calculus Two, Coursera, Jim Fowler
Multivariable Calculus, Khan Academy, Grant Sanderson
Linear Algebra, MIT, Prof. Gilbert Strang (so mechanical..)
Coding the Matrix, Brown University, Philip Klein
Introduction to Probability, The Science of Uncertainty Edx, MIT, Joh Tsitsiklis
微积分, coursera, 吉姆·福勒
微积分, coursera, 吉姆·福勒
多元微积分, 汗学院, grant sanderson
线性代数, 麻省理工学院教授 吉尔伯特·斯特朗(所以机械..)
编码矩阵, 布朗大学, 菲利普·克莱因
介绍概率, 不确定的科学, 麻省理工学院, joh tsitsiklis
以下是比较旧的RL Course by David Silver
UCL Course on RL
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
Advanced Topics 2015 (COMPM050/COMPGI13)
Reinforcement Learning
Contact: d.silver@cs.ucl.ac.uk
Video-lectures available here
Lecture 1: Introduction to Reinforcement Learning
Lecture 2: Markov Decision Processes
Lecture 3: Planning by Dynamic Programming
Lecture 4: Model-Free Prediction
Lecture 5: Model-Free Control
Lecture 6: Value Function Approximation
Lecture 7: Policy Gradient Methods
Lecture 8: Integrating Learning and Planning
Lecture 9: Exploration and Exploitation
Lecture 10: Case Study: RL in Classic Games
Easy21 assignment
Discussion and announcements: http://groups.google.com/group/csml-advanced-topics