DEEP LEARNING 大满贯课程表

Reinforcement Learning
post by ISH GIRWAN

Courses/Tutorials

Books

Blogs

I think you can take the UC Berkeley course instead of David Silver's course as it's more up to date. Additionally you can check Arthur Juliani's blog series, it's really good.

相关课程

Calculus One, Coursera, Jim Fowler 
Calculus Two, Coursera, Jim Fowler
Multivariable Calculus, Khan Academy, Grant Sanderson
Linear Algebra, MIT, Prof. Gilbert Strang (so mechanical..)
Coding the Matrix, Brown University, Philip Klein
Introduction to Probability, The Science of Uncertainty Edx, MIT, Joh Tsitsiklis
微积分, coursera, 吉姆·福勒
微积分, coursera, 吉姆·福勒
多元微积分, 汗学院, grant sanderson
线性代数, 麻省理工学院教授 吉尔伯特·斯特朗(所以机械..)
编码矩阵, 布朗大学, 菲利普·克莱因
介绍概率, 不确定的科学, 麻省理工学院, joh tsitsiklis

以下是比较旧的RL Course by David Silver

UCL Course on RL
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Advanced Topics  2015 (COMPM050/COMPGI13)

Reinforcement Learning

Contact: d.silver@cs.ucl.ac.uk

Video-lectures available here

Lecture 1: Introduction to Reinforcement Learning

Lecture 2: Markov Decision Processes

Lecture 3: Planning by Dynamic Programming

Lecture 4: Model-Free Prediction

Lecture 5: Model-Free Control

Lecture 6: Value Function Approximation

Lecture 7: Policy Gradient Methods

Lecture 8: Integrating Learning and Planning

Lecture 9: Exploration and Exploitation

Lecture 10: Case Study: RL in Classic Games

Easy21 assignment

Discussion and announcements: http://groups.google.com/group/csml-advanced-topics

Previous RL exam questions and answers

上一篇:Powershell Deploy Service Fabric Application To Local Cluster


下一篇:Zookeeper 增删改查