1.创建型模式
单例模式
单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在。当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场。
比如,某个服务器程序的配置信息存放在一个文件中,客户端通过一个 AppConfig 的类来读取配置文件的信息。如果在程序运行期间,有很多地方都需要使用配置文件的内容,也就是说,很多地方都需要创建 AppConfig 对象的实例,这就导致系统中存在多个 AppConfig 的实例对象,而这样会严重浪费内存资源,尤其是在配置文件内容很多的情况下。事实上,类似 AppConfig 这样的类,我们希望在程序运行期间只存在一个实例对象
class Singleton(object):
def __init__(self):
pass
def __new__(cls, *args, **kwargs):
if not hasattr(Singleton, "_instance"):
Singleton._instance = object.__new__(cls)
return Singleton._instance
obj1 = Singleton()
obj2 = Singleton()
print(obj1, obj2) # <__main__.Singleton object at 0x000001F2C74E4D08> <__main__.Singleton object at 0x000001F2C74E4D08>
工厂模式
工厂模式是一个在软件开发中用来创建对象的设计模式。
工厂模式包涵一个超类。这个超类提供一个抽象化的接口来创建一个特定类型的对象,而不是决定哪个对象可以被创建。
为了实现此方法,需要创建一个工厂类创建并返回。
当程序运行输入一个“类型”的时候,需要创建于此相应的对象。这就用到了工厂模式。在如此情形中,实现代码基于工厂模式,可以达到可扩展,可维护的代码。当增加一个新的类型,不在需要修改已存在的类,只增加能够产生新类型的子类。
简短的说,当以下情形可以使用工厂模式:
1.不知道用户想要创建什么样的对象
2.当你想要创建一个可扩展的关联在创建类与支持创建对象的类之间。
一个例子更能很好的理解以上的内容:
- 我们有一个基类Person ,包涵获取名字,性别的方法 。有两个子类male 和female,可以打招呼。还有一个工厂类。
- 工厂类有一个方法名getPerson有两个输入参数,名字和性别。
- 用户使用工厂类,通过调用getPerson方法。
在程序运行期间,用户传递性别给工厂,工厂创建一个与性别有关的对象。因此工厂类在运行期,决定了哪个对象应该被创建
class Person:
def __init__(self):
self.name = None
self.gender = None
def getName(self):
return self.name
def getGender(self):
return self.gender
class Male(Person):
def __init__(self, name):
print("Hello Mr " + name)
class Female(Person):
def __init__(self, name):
print("Hello Miss " + name)
class Factory:
def getPerson(self, name, gender):
if gender == "M":
return Male(name)
if gender == "F":
return Female(name)
if __name__ == '__main__':
factory = Factory()
person = factory.getPerson("zhangsan", "M")
print(person)
建造者模式
将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。
相关模式:思路和模板方法模式很像,模板方法是封装算法流程,对某些细节,提供接口由子类修改,建造者模式更为高层一点,将所有细节都交由子类实现。例如C++模板中可以定义一个类实现数字可以相加,字符串也可以相加的功能,模板中只要传入相应的类型底层就可以自动判断是字符串还是数字,并且返回指定的结果
一个例子更能很好的理解以上的内容:
1. 有一个接口类,定义创建对象的方法。一个指挥员类,接受创造者对象为参数。两个创造者类,创建对象方法相同,内部创建可自定义
2.一个指挥员,两个创造者(瘦子 胖子),指挥员可以指定由哪个创造者来创造
from abc import ABCMeta, abstractmethod
class Builder():
__metaclass__ = ABCMeta
@abstractmethod
def draw_left_arm(self):
pass
@abstractmethod
def draw_right_arm(self):
pass
@abstractmethod
def draw_left_foot(self):
pass
@abstractmethod
def draw_right_foot(self):
pass
@abstractmethod
def draw_head(self):
pass
@abstractmethod
def draw_body(self):
pass
class Thin(Builder):
def draw_left_arm(self):
print("画左手")
def draw_right_arm(self):
print("画右手")
def draw_left_foot(self):
print("画左脚")
def draw_right_foot(self):
print("画右脚")
def draw_head(self):
print("画头")
def draw_body(self):
print("画瘦身体")
class Fat(Builder):
def draw_left_arm(self):
print("画左手")
def draw_right_arm(self):
print("画右手")
def draw_left_foot(self):
print("画左脚")
def draw_right_foot(self):
print("画右脚")
def draw_head(self):
print("画头")
def draw_body(self):
print("画胖身体")
class Director():
def __init__(self, person):
self.person = person
def draw(self):
self.person.draw_left_arm()
self.person.draw_right_arm()
self.person.draw_left_foot()
self.person.draw_right_foot()
self.person.draw_head()
self.person.draw_body()
if __name__ == '__main__':
thin = Thin()
fat = Fat()
director_thin = Director(thin)
director_thin.draw()
director_fat = Director(fat)
director_fat.draw()
原型模式
用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。
原型模式本质就是克隆对象,所以在对象初始化操作比较复杂的情况下,很实用,能大大降低耗时,提高性能,因为“不用重新初始化对象,而是动态地获得对象运行时的状态”。
浅拷贝(Shallow Copy):指对象的字段被拷贝,而字段引用的对象不会被拷贝,拷贝的对象和源对象只是名称相同,但是他们共用一个实体。
深拷贝(deep copy):对对象实例中字段引用的对象也进行拷贝。
import copy
from collections import OrderedDict
class Book:
def __init__(self, name, authors, price, **rest):
"""rest的例子有:出版商,长度,标签,出版日期"""
self.name = name
self.authors = authors
self.price = price
self.__dict__.update(rest)
def __str__(self):
mylist = []
ordered = OrderedDict(sorted(self.__dict__.items()))
for i in ordered.keys():
mylist.append('{}: {}'.format(i, ordered[i]))
if i == 'price':
mylist.append('$')
mylist.append('\n')
return ''.join(mylist)
class Prototype:
def __init__(self):
self.objects = dict()
def register(self, identifier, obj):
self.objects[identifier] = obj
def unregister(self, identifier):
del self.objects[identifier]
def clone(self, identifier, **attr):
found = self.objects.get(identifier)
if not found:
raise ValueError('incorrect object identifier: {}'.format(identifier))
obj = copy.deepcopy(found)
obj.__dict__.update(attr)
return obj
def main():
b1 = Book('The C Programming Language', ('Brian W. Kernighan', 'Dennis M.Ritchie'),
price=118, publisher='Prentice Hall', length=228, publication_date='1978-02-22',
tags=('C', 'programming', 'algorithms', 'data structures'))
prototype = Prototype()
cid = 'k&r-first'
prototype.register(cid, b1)
b2 = prototype.clone(cid, name='The C Programming Language(ANSI)', price=48.99,
length=274, publication_date='1988-04-01', edition=2)
print(b1)
print(b2)
print("ID b1 : {} != ID b2 : {}".format(id(b1), id(b2)))
if __name__ =='__main__':
main()
'''
C:/Users/wangxianchao/PycharmProjects/PythonStudy/多线程.py
odict_keys(['authors', 'length', 'name', 'price', 'publication_date', 'publisher', 'tags'])
authors: ('Brian W. Kernighan', 'Dennis M.Ritchie')
length: 228
name: The C Programming Language
price: 118$
publication_date: 1978-02-22
publisher: Prentice Hall
tags: ('C', 'programming', 'algorithms', 'data structures')
odict_keys(['authors', 'edition', 'length', 'name', 'price', 'publication_date', 'publisher', 'tags'])
authors: ('Brian W. Kernighan', 'Dennis M.Ritchie')
edition: 2
length: 274
name: The C Programming Language(ANSI)
price: 48.99$
publication_date: 1988-04-01
publisher: Prentice Hall
tags: ('C', 'programming', 'algorithms', 'data structures')
ID b1 : 1922565623240 != ID b2 : 1922565694600
Process finished with exit code 0
'''