本文主要探讨能够触发performTraversals()执行的invalidate()、postInvalidate()和requestLayout()方法的流程。在调用这三个方法到最后执行到performTraversals()方法,涉及到到通过Choroegrapher请求Vsync信号,实现按帧绘制的流程,所以还会介绍Choroegrapher类的工作流程。
一、requestLayout()流程
invalidate()和postInvalidate()能够触发View的重画,这两个方法最终会调用到performTraversals()中的performDraw()来完成重绘制,但是是否会执行onMeasure()和onLayout()过程要根据标志位的状况来决定;requesetLayout()方法也会调用到performTraversals()方法,但是只会执行measure和layout流程,不会调用到draw流程来触发重画动作。直接来看View.requestLayout()代码。
@CallSuper
public void requestLayout() {
if (mMeasureCache != null) mMeasureCache.clear();
//如果当前的整个View树在进行布局流程的话,则会调用requestLayoutDuringLayout()
//让这次的布局延时执行
if (mAttachInfo != null && mAttachInfo.mViewRequestingLayout == null) {
// Only trigger request-during-layout logic if this is the view requesting it,
// not the views in its parent hierarchy
ViewRootImpl viewRoot = getViewRootImpl();
if (viewRoot != null && viewRoot.isInLayout()) {
if (!viewRoot.requestLayoutDuringLayout(this)) {
return;
}
}
mAttachInfo.mViewRequestingLayout = this;
}
//PFLAG_FORCE_LAYOUT会在执行View的measure()和layout()方法时判断
//只有设置过该标志位,才会执行measure()和layout()流程
mPrivateFlags |= PFLAG_FORCE_LAYOUT;
mPrivateFlags |= PFLAG_INVALIDATED; if (mParent != null && !mParent.isLayoutRequested()) {
mParent.requestLayout();
}
if (mAttachInfo != null && mAttachInfo.mViewRequestingLayout == this) {
mAttachInfo.mViewRequestingLayout = null;
}
}
该方法主要是设置了PFLAG_FORCE_LAYOUT和PFLAG_INVALIDATED到当前View的Flag中,然后调用到当前View(当前View可能是一个控件View,也可能是一个布局View,因为对于这两类View都能调用requestLayout()方法)的父布局View的requestLayout()方法,父布局View是ViewGroup类型,没有重写该requestLayout()方法,所以实际还是调回到View.requestLayout()方法的这套逻辑。这个过程,就是设置当前View标志位后,就不断的向上调用父布局View的requestLayout(),最后调用到根View即DecorView的requestLayout(),而DecorView的mParent变量指向的是当前窗口对应的ViewRootImpl对象,最后一次设置完DecorView标志位后,调用到ViewRootImpl.requestLayout()方法,进入该代码。
@Override
public void requestLayout() {
//该boolean变量会在ViewRootImpl.performLayout()开始时置为ture,结束置false
//表示当前不处于Layout过程
if (!mHandlingLayoutInLayoutRequest) {
checkThread();
mLayoutRequested = true;
scheduleTraversals();
}
}
如果当前不是正在执行layout过程,则会调用scheduleTraversals()方法,进入ViewRootImpl.scheduleTraversals()。
void scheduleTraversals() {
if (!mTraversalScheduled) {
//在下一段代码处会置回false
//表示在排好这次绘制请求前,不再排其它的绘制请求
mTraversalScheduled = true;
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
if (!mUnbufferedInputDispatch) {
scheduleConsumeBatchedInput();
}
notifyRendererOfFramePending();
pokeDrawLockIfNeeded();
}
}
这里主要是调用到了ViewRootImpl的另一个重要的变量mChoreographer,它是Choreographer类型的,这个对象会请求Vsync信号来控制绘制的进行,实现了按帧进行绘制的机制,这个类会在后文进行介绍。该方法对于绘制的请求经过了Choreographer的编排后,最终会调用回ViewRootImpl.doTraversal()方法。
void doTraversal() {
if (mTraversalScheduled) {
mTraversalScheduled = false;
mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
... //用于调试相关代码 performTraversals(); ... //用于调试相关代码
}
}
然后调用到ViewRootImpl.performTraversals()方法。
二、invalidate()与postInvalidate()流程
invalidate()与postInvalidate()都是用于被调用来触发View的更新(重画)动作,区别在于invalidate()方法是在UI线程自身中使用,而postInvalidate()是非UI线程中使用。 首先来看View.postInvalidate()。
public void postInvalidate() {
postInvalidateDelayed(0);
} public void postInvalidateDelayed(long delayMilliseconds) {
// We try only with the AttachInfo because there's no point in invalidating
// if we are not attached to our window
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
attachInfo.mViewRootImpl.dispatchInvalidateDelayed(this, delayMilliseconds);
}
}
调用到了对应的ViewRootImpl对象的dispatchInvalidateDelayed()方法,进入该代码。
public void dispatchInvalidateDelayed(View view, long delayMilliseconds) {
Message msg = mHandler.obtainMessage(MSG_INVALIDATE, view);
mHandler.sendMessageDelayed(msg, delayMilliseconds);
}
这里实现了一个消息机制,发送了MSG_INVSLIDSTE。进入处理消息的ViewRootImpl.handleMessage()方法。
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_INVALIDATE:
((View) msg.obj).invalidate();
break;
...
}
这里实际上就是调回了调用postInvalidate()方法的View的invalidate()方法。由于invalidate()方法只能在UI线程执行,所以postInvalidate只是实现了一个消息机制,让用户能够在非UI线程使用,最终还是调用到invalidate()方法来触发重画,实现界面更新动作。继续来看View.invalidate()方法,该方法逻辑的实际实际上时调用到invalidateInternal()方法来实现的。
public void invalidate() {
invalidate(true);
} void invalidate(boolean invalidateCache) {
//mLeft、mRigth、mTop、mBottom记录的是当前View边界距离其父布局View边界的距离
invalidateInternal(0, 0, mRight - mLeft, mBottom - mTop, invalidateCache, true);
} void invalidateInternal(int l, int t, int r, int b, boolean invalidateCache,
boolean fullInvalidate) {
if (mGhostView != null) {
mGhostView.invalidate(true);
return;
}
//如果当前视图为不可见状态且没有动画正在执行,且其父布局也没有过渡动画执行,则跳过
if (skipInvalidate()) {
return;
}
//当前View没有正在执行该方法
//或绘制缓存可用或未重绘过或透明度发生改变
//PFLAG_DRAWN会在该方法内去改标志位
//PFLAG_INVALIDATED会在View.draw()方法执行时去掉该标志位
if ((mPrivateFlags & (PFLAG_DRAWN | PFLAG_HAS_BOUNDS)) == (PFLAG_DRAWN | PFLAG_HAS_BOUNDS)
|| (invalidateCache && (mPrivateFlags & PFLAG_DRAWING_CACHE_VALID) == PFLAG_DRAWING_CACHE_VALID)
|| (mPrivateFlags & PFLAG_INVALIDATED) != PFLAG_INVALIDATED
|| (fullInvalidate && isOpaque() != mLastIsOpaque)) {
//如果需要全部重绘,invalidate()未传参调用时默认为true
if (fullInvalidate) {
mLastIsOpaque = isOpaque();
mPrivateFlags &= ~PFLAG_DRAWN;
} mPrivateFlags |= PFLAG_DIRTY; if (invalidateCache) {
mPrivateFlags |= PFLAG_INVALIDATED;
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
} // Propagate the damage rectangle to the parent view.
//damage记录的区域是需要更新的dirty区域,当前的坐标时相对于自身来设置的
//通过不断调用到父类的invalidateChild()方法,来不断更新dirty区域的相对坐标
final AttachInfo ai = mAttachInfo;
final ViewParent p = mParent;
if (p != null && ai != null && l < r && t < b) {
final Rect damage = ai.mTmpInvalRect;
damage.set(l, t, r, b);
p.invalidateChild(this, damage);
} // Damage the entire projection receiver, if necessary.
if (mBackground != null && mBackground.isProjected()) {
final View receiver = getProjectionReceiver();
if (receiver != null) {
receiver.damageInParent();
}
} // Damage the entire IsolatedZVolume receiving this view's shadow.
if (isHardwareAccelerated() && getZ() != 0) {
damageShadowReceiver();
}
}
}
这里会通过调用mParent的invalidateChild()方法,来触发父类对于dirty区域的调整(可能会调整可能还是原区域)及改区域相对坐标的调整。进入ViewGroup.invalidateChild()方法。
@Override
public final void invalidateChild(View child, final Rect dirty) {
ViewParent parent = this; final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
// If the child is drawing an animation, we want to copy this flag onto
// ourselves and the parent to make sure the invalidate request goes
// through
//drawAnimation记录调用该方法的子View是否正在执行动画
final boolean drawAnimation = (child.mPrivateFlags & PFLAG_DRAW_ANIMATION)
== PFLAG_DRAW_ANIMATION; // Check whether the child that requests the invalidate is fully opaque
// Views being animated or transformed are not considered opaque because we may
// be invalidating their old position and need the parent to paint behind them.
//调用该方法的子View是否不透明:处于不透明状态且没有在执行动画且变化矩阵没有变化
//Matrix可以用于View的平移、缩放、扩放、旋转等操作,比如某些应用上的双指缩放功能
Matrix childMatrix = child.getMatrix();
final boolean isOpaque = child.isOpaque() && !drawAnimation &&
child.getAnimation() == null && childMatrix.isIdentity();
// Mark the child as dirty, using the appropriate flag
// Make sure we do not set both flags at the same time
int opaqueFlag = isOpaque ? PFLAG_DIRTY_OPAQUE : PFLAG_DIRTY; if (child.mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= PFLAG_INVALIDATED;
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
}
final int[] location = attachInfo.mInvalidateChildLocation;
//记录子View边界距离父View左边界和上边界的距离到Location中,用于下一段代码中的计算
location[CHILD_LEFT_INDEX] = child.mLeft;
location[CHILD_TOP_INDEX] = child.mTop;
//如果子View设置了变换矩阵,则根据变换矩阵调整dirty区域
if (!childMatrix.isIdentity() ||
(mGroupFlags & ViewGroup.FLAG_SUPPORT_STATIC_TRANSFORMATIONS) != 0) {
RectF boundingRect = attachInfo.mTmpTransformRect;
boundingRect.set(dirty);
Matrix transformMatrix;
if ((mGroupFlags & ViewGroup.FLAG_SUPPORT_STATIC_TRANSFORMATIONS) != 0) {
Transformation t = attachInfo.mTmpTransformation;
boolean transformed = getChildStaticTransformation(child, t);
if (transformed) {
transformMatrix = attachInfo.mTmpMatrix;
transformMatrix.set(t.getMatrix());
if (!childMatrix.isIdentity()) {
transformMatrix.preConcat(childMatrix);
}
} else {
transformMatrix = childMatrix;
}
} else {
transformMatrix = childMatrix;
}
transformMatrix.mapRect(boundingRect);
dirty.set((int) Math.floor(boundingRect.left),
(int) Math.floor(boundingRect.top),
(int) Math.ceil(boundingRect.right),
(int) Math.ceil(boundingRect.bottom));
}
//这是一个从当前的布局View向上不断遍历当前布局View的父布局,最后遍历到ViewRootImpl的循环
do {
View view = null;
//parent可能为ViewGroup类型,也可能为ViewRootImpl类型
//最后一次循环执行时为ViewRootImpl类型
if (parent instanceof View) {
view = (View) parent;
}
//如果子View正在执行动画,设置遍历的父布局View的动画标识
if (drawAnimation) {
if (view != null) {
view.mPrivateFlags |= PFLAG_DRAW_ANIMATION;
} else if (parent instanceof ViewRootImpl) {
((ViewRootImpl) parent).mIsAnimating = true;
}
} // If the parent is dirty opaque or not dirty, mark it dirty with the opaque
// flag coming from the child that initiated the invalidate
//设置当前ViewGroup的Dirty标识,表示当前的ViewGroup需要重绘
if (view != null) {
if ((view.mViewFlags & FADING_EDGE_MASK) != 0 &&
view.getSolidColor() == 0) {
opaqueFlag = PFLAG_DIRTY;
}
if ((view.mPrivateFlags & PFLAG_DIRTY_MASK) != PFLAG_DIRTY) {
view.mPrivateFlags = (view.mPrivateFlags & ~PFLAG_DIRTY_MASK) | opaqueFlag;
}
}
//调用当前布局View的invalidateChildParent()方法,返回的值为当前布局View的父布局
//通过循环向上调用,最后返回的根布局是ViewRootImpl对象
parent = parent.invalidateChildInParent(location, dirty);
if (view != null) {
// Account for transform on current parent
Matrix m = view.getMatrix();
if (!m.isIdentity()) {
RectF boundingRect = attachInfo.mTmpTransformRect;
boundingRect.set(dirty);
m.mapRect(boundingRect);
dirty.set((int) Math.floor(boundingRect.left),
(int) Math.floor(boundingRect.top),
(int) Math.ceil(boundingRect.right),
(int) Math.ceil(boundingRect.bottom));
}
}
} while (parent != null);
}
}
在do-while循环中会调用到parent = parent.invalidateChildInParent(location, dirty),这里执行到ViewGroup.invalidateChildInParent()方法。
@Override
public ViewParent invalidateChildInParent(final int[] location, final Rect dirty) {
//
if ((mPrivateFlags & PFLAG_DRAWN) == PFLAG_DRAWN ||
(mPrivateFlags & PFLAG_DRAWING_CACHE_VALID) == PFLAG_DRAWING_CACHE_VALID) {
//如果ViewGroup有没有动画执行或者动画已经完成
if ((mGroupFlags & (FLAG_OPTIMIZE_INVALIDATE | FLAG_ANIMATION_DONE)) !=
FLAG_OPTIMIZE_INVALIDATE) {
//dirty记录的是最开始调到invalidate()的View的区域
//dirty的四个坐标值值在执行下面代码是相对于当前循环到上一个ViewGroup来确定的
//这里做了一个偏移动作,偏移的量是当前上一个ViewGroup相对于现在ViewGroup的偏移值
//做完下面的偏移操作后,dirty的四个坐标就是想对于当前ViewGroup的坐标值了
dirty.offset([CHILD_LEFT_INDEX] - mScrollX,
location[CHILD_TOP_INDEX] - mScrollY);
//如果当前ViewGroup需要裁剪View
//则将当前ViewGroup的区域与View的区域做求并集的操作
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == 0) {
dirty.union(0, 0, mRight - mLeft, mBottom - mTop);
} final int left = mLeft;
final int top = mTop;
//如果当前ViewGroup需要裁剪View,且ViewGroup区域与View区域没有并集,则dirty置空
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == FLAG_CLIP_CHILDREN) {
if (!dirty.intersect(0, 0, mRight - left, mBottom - top)) {
dirty.setEmpty();
}
}
mPrivateFlags &= ~PFLAG_DRAWING_CACHE_VALID;
//用于循环到下一个ViewGroup时做offset操作
location[CHILD_LEFT_INDEX] = left;
location[CHILD_TOP_INDEX] = top; if (mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= PFLAG_INVALIDATED;
} return mParent; } else {//如果当前ViewGroup中有动画要执行
mPrivateFlags &= ~PFLAG_DRAWN & ~PFLAG_DRAWING_CACHE_VALID; location[CHILD_LEFT_INDEX] = mLeft;
location[CHILD_TOP_INDEX] = mTop;
//如果需要对子View裁剪则设置dirty为当前ViewGroup区域
//如果不需要则求当前ViewGroup区域与原ditry区域并集
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == FLAG_CLIP_CHILDREN) {
dirty.set(0, 0, mRight - mLeft, mBottom - mTop);
} else {
// in case the dirty rect extends outside the bounds of this container
dirty.union(0, 0, mRight - mLeft, mBottom - mTop);
} if (mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= PFLAG_INVALIDATED;
} return mParent;
}
} return null;
}
invalidateChildInParent()主要是完成了dirty区域在调用该方法的ViewGroup中的更新,dirty指示的区域就是需要重绘制的区域。如果ViewGroup没有动画在执行,则dirty区域还是原来的区域,只需要通过偏移操作更改该区域的坐标值从相对于上一个ViewGroup(父ViewGroup),到相对于当前ViewGroup;如果有动画要执行,则表示当前整个ViewGroup都需要重绘,更改dirty值为当前ViewGroup 区域。
do-while最后一次循环最后会调用到ViewRootImpl.invalidateChildInParent()方法,进入该代码。
@Override
public ViewParent invalidateChildInParent(int[] location, Rect dirty) {
checkThread();
if (DEBUG_DRAW) Log.v(mTag, "Invalidate child: " + dirty);
//如果传入一个null drity,则表示要重绘当前ViewRootImpl指示的整个区域
//如果传入一个empty dirty,则表示经过计算需要重绘的区域不需要绘制
if (dirty == null) {
invalidate();
return null;
} else if (dirty.isEmpty() && !mIsAnimating) {
return null;
}
... invalidateRectOnScreen(dirty); return null;
}
调用到了ViewRootImpl.invalidateRectOnScreen()方法,进入该代码。
private void invalidateRectOnScreen(Rect dirty) {
//mDirty记录的是当前ViewRootImpl里还未进行重绘需要重绘的区域
//mDirty会在ViewRootImpl.draw()方法结尾处设置为empty
final Rect localDirty = mDirty;
if (!localDirty.isEmpty() && !localDirty.contains(dirty)) {
mAttachInfo.mSetIgnoreDirtyState = true;
mAttachInfo.mIgnoreDirtyState = true;
} // Add the new dirty rect to the current one
//当前已有的dirty区域与此次dirty区域做并集
localDirty.union(dirty.left, dirty.top, dirty.right, dirty.bottom);
// Intersect with the bounds of the window to skip
// updates that lie outside of the visible region
final float appScale = mAttachInfo.mApplicationScale;
//处理窗口缩放与做完并集的localDirty做交集
final boolean intersected = localDirty.intersect(0, 0,
(int) (mWidth * appScale + 0.5f), (int) (mHeight * appScale + 0.5f));
//如果没有交集
if (!intersected) {
localDirty.setEmpty();
} //mWillDrawSoon在performTraversals()方法开始时置为true,结束时置false
//如果没有在执行performTraversals &&(intersected || 正在执行动画)
if (!mWillDrawSoon && (intersected || mIsAnimating)) {
scheduleTraversals();
}
}
最后会调用到scheduleTraversals()方法,后续在请求到Vsync信号后,便会调用到peformTraversals()方法。
三、Choreographer类分析
“编舞类”Choreoprapher的作用是编排输入事件、动画事件和绘制事件的执行,通过调用Choreoprapher.postCallback()方法,向Choreoprapher加入需要编排的事件,而Choreoprapher则通过请求Vsync信号,来控制这些事件按照屏幕刷新周期有规律的执行,即是实现了按帧绘制的机制。
在ViewRootImpl中,会调用mChoreographer = Choreographer.getInstance()来初始化一个Choreographer变量。进入Choreographer.getInstance()代码。
private static final ThreadLocal<Choreographer> sThreadInstance =
new ThreadLocal<Choreographer>() {
@Override
protected Choreographer initialValue() {
Looper looper = Looper.myLooper();
if (looper == null) {
throw new IllegalStateException("The current thread must have a looper!");
}
return new Choreographer(looper);
}
}; public static Choreographer getInstance() {
return sThreadInstance.get();
}
这里实际调用了ThreadLocal类型的静态常量的get()方法,ThreadLocal中保存的类型是Choreographer类。根据ThreadLocal机制,sThreadInstance.get()方法会调用到上面代码中实现的initialValue()方法,该方法返回一个Choregrapher类型对象,返回的该对象即作为getInstance()方法的返回,也是最后赋值给了ViewRootImpl中的mChoreogropher变量。在initialValue()方法中会new一个Choreographer对象,进入构建方法。
private Choreographer(Looper looper) {
//调用该方法的源头是UI线程,所有looper为UI线程的looper
mLooper = looper;
mHandler = new FrameHandler(looper);
//如果系统使用Vsync机制,则创建一个Vsync信号的接收器FrameDisplayEventReceiver类
mDisplayEventReceiver = USE_VSYNC ? new FrameDisplayEventReceiver(looper) : null;
mLastFrameTimeNanos = Long.MIN_VALUE; mFrameIntervalNanos = (long)(1000000000 / getRefreshRate()); //创建回调数组,CALLBAKCK_LAST=3,后文详解
mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
for (int i = 0; i <= CALLBACK_LAST; i++) {
mCallbackQueues[i] = new CallbackQueue();
}
}
首先来说mCallbackQueues,这是一个长度为4的CallbackQueue类型的数组,即保存了四个回调队列。每个回调队列能够保存多个CallbackRecord,即是回调事件。这四个队列分别保存四类回调事件:Input事件、Animation事件、Draw事件,还有一种是用来解决动画启动问题的事件。在ViewRootImpl.scheduleTraversals()方法中,便会调用相关方法向队列中添加一个Draw事件,并触发后续到请求信号来处理事件的动作。
void scheduleTraversals() {
... mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
...
}
继续来看Choreographer.postCallback()方法,该方法是调用到postCallbackDelayedInternal()方法来实现主要逻辑。
public void postCallback(int callbackType, Runnable action, Object token) {
postCallbackDelayed(callbackType, action, token, 0);
} public void postCallbackDelayed(int callbackType,
Runnable action, Object token, long delayMillis) {
... //异常情况判断
postCallbackDelayedInternal(callbackType, action, token, delayMillis);
} private void postCallbackDelayedInternal(int callbackType,
Object action, Object token, long delayMillis) {
... // Debug log synchronized (mLock) {
final long now = SystemClock.uptimeMillis();
final long dueTime = now + delayMillis;
//将此次回调事件添加到对应类型的事件队列
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token); if (dueTime <= now) {
//立刻安排执行
scheduleFrameLocked(now);
} else {
//延时处理,还是会调用到scheduleFrameLocked()方法
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
msg.arg1 = callbackType;
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, dueTime);
}
}
}
调用addCallbackLock()方法,会根据本次事件信息生成一个CallbackRecord,添加到队列中,但并不一定添加在队列到尾部。队列中所有事件的排列是按照dueTime的值由小到大排列大,即越快要求执行的事件排列得越前,所以在添加事件到队列时会根据dueTime插入到对应的位置。
插入队列操作完成后,会调用scheduleFrameLoacked()方法。
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
if (USE_VSYNC) { //如果使用了Vsync机制
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame on vsync.");
} // If running on the Looper thread, then schedule the vsync immediately,
// otherwise post a message to schedule the vsync from the UI thread
// as soon as possible.
//如果前线程开启了Looper,则调用scheduleVsyncLocked()请求Vsync信号
if (isRunningOnLooperThreadLocked()) {
scheduleVsyncLocked();
} else {//如果当前线程未启动Looper
//则发消息到调用创建Choreographer的线程来请求Vsync信号
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {//如果未使用Vsync机制,则手动计算下一次绘制时间,使用延时消息来控制
final long nextFrameTime = Math.max(
mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
}
Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, nextFrameTime);
}
}
}
一般情况下是实用Vsync机制的,且scheduleFrameLocked()也是被UI线程调用执行的,所以直接调用到Choreographer.scheduleVsyncLocked()方法,进入该代码。
private void scheduleVsyncLocked() {
mDisplayEventReceiver.scheduleVsync();
}
这里直接调用到mDisplayEventReceiver的scheduleVsync()方法,该变量是FrameDisplayEventReceiver类型的,该类继承自DisplayEventReceiver类。scheduleVsync()相当于发起了一次Vsync请求,这样在请求之后下一个Vsync信号发出时,FrameDisplayEventReceiver类便能接收到这词Vsync信号,会调用到FrameDisplayEventReceiver类的onVsync()方法,在onVsync()方法中会发送消息到UI线程,调用到doFrame()方法,Frame是帧的意思,doFrame则表示这次接收到Vsync信号的这一帧内要做的事,进入FrameDisplayEventReceiver.doFrame()方法(FrameDisplayEventReceiver类时Choreographer内部类),
void doFrame(long frameTimeNanos, int frame) {
final long startNanos;
synchronized (mLock) {
//该变量会在scheduleFrameLocked()方法开始时设置为true,本方法结束置为false
//表示有callback事件需要安排执行
if (!mFrameScheduled) {
return; // no work to do
} if (DEBUG_JANK && mDebugPrintNextFrameTimeDelta) {
mDebugPrintNextFrameTimeDelta = false;
Log.d(TAG, "Frame time delta: "
+ ((frameTimeNanos - mLastFrameTimeNanos) * 0.000001f) + " ms");
}
//frameTimeNanos表示Vsync信号发出的时间或者帧开始的时间
long intendedFrameTimeNanos = frameTimeNanos;
//当前时间
startNanos = System.nanoTime();
final long jitterNanos = startNanos - frameTimeNanos;
//当前时间距离Vsync信号时间超过了屏幕的刷新周期,即一帧16ms的时间
if (jitterNanos >= mFrameIntervalNanos) {
final long skippedFrames = jitterNanos / mFrameIntervalNanos;
//如果超过太多,即跳过了太多帧,则打出Log提示跳过了太多帧,可能是主线程做了太多事了
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
}
final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
if (DEBUG_JANK) {
Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms "
+ "which is more than the frame interval of "
+ (mFrameIntervalNanos * 0.000001f) + " ms! "
+ "Skipping " + skippedFrames + " frames and setting frame "
+ "time to " + (lastFrameOffset * 0.000001f) + " ms in the past.");
}
frameTimeNanos = startNanos - lastFrameOffset;
}
//如果距离最后一帧时间未超过屏幕刷新周期,则重新请求Vsync信号
if (frameTimeNanos < mLastFrameTimeNanos) {
if (DEBUG_JANK) {
Log.d(TAG, "Frame time appears to be going backwards. May be due to a "
+ "previously skipped frame. Waiting for next vsync.");
}
scheduleVsyncLocked();
return;
} mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
mFrameScheduled = false;
//设置本次帧的执行时间为最后一次的帧执行时间
mLastFrameTimeNanos = frameTimeNanos;
} try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);
//依次从队列中取出这四类事件进行执行
//但不一定都会执行这四类事件,要看队列中是否有post过且符合这一帧执行到条件的事件
mFrameInfo.markInputHandlingStart();
doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
mFrameInfo.markAnimationsStart();
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos); mFrameInfo.markPerformTraversalsStart();
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
} finally {
AnimationUtils.unlockAnimationClock();
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
} if (DEBUG_FRAMES) {
final long endNanos = System.nanoTime();
Log.d(TAG, "Frame " + frame + ": Finished, took "
+ (endNanos - startNanos) * 0.000001f + " ms, latency "
+ (startNanos - frameTimeNanos) * 0.000001f + " ms.");
}
}
该方法会调用doCallbacks方法来依次执行当前时间对应的四类事件。由于CALLBACK_COMMIT是一种修正属性动画启动事件过长导致掉帧问题的一种机制,并不是真正会执行在主线程的流程,这里不做详解。所以在执行事件时,主要是依次执行了input、animation和traversal事件。我们可以抓一个systrace来直观的了解这个过程,以UC浏览器双指扩放页面的绘制过程中的某一帧为例。
doFrame()方法中首先执行来input事件的处理,然后后面有个很短的矩形体条,执行的是animation事件;之后便是执行到了traversal事件,在执行traversal流程中执行了draw流程,但并没有执行measure和layout流程,因为本次绘制不需要重新测量和布局;在执行draw流程过程中实际调用到了View的draw()方法。
继续来看Choroegrapher.doCallbacks()方法的实现。
void doCallbacks(int callbackType, long frameTimeNanos) {
CallbackRecord callbacks;
synchronized (mLock) {
// We use "now" to determine when callbacks become due because it's possible
// for earlier processing phases in a frame to post callbacks that should run
// in a following phase, such as an input event that causes an animation to start.
final long now = System.nanoTime();
//根据帧开始的时间,取出当前该类型队列中的一个callback事件
callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(
now / TimeUtils.NANOS_PER_MS);
if (callbacks == null) {
return;
}
mCallbacksRunning = true; ... //CALLBACK_COMMIT事件的处理try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]);
for (CallbackRecord c = callbacks; c != null; c = c.next) {
if (DEBUG_FRAMES) {
Log.d(TAG, "RunCallback: type=" + callbackType
+ ", action=" + c.action + ", token=" + c.token
+ ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime));
}
c.run(frameTimeNanos);
}
} finally {
synchronized (mLock) {
mCallbacksRunning = false;
do {
final CallbackRecord next = callbacks.next;
recycleCallbackLocked(callbacks);
callbacks = next;
} while (callbacks != null);
}
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
首先来看下CallbackQueue.extractDueCallbacksLocked()方法,了解队列取事件执行的机制。
public CallbackRecord extractDueCallbacksLocked(long now) {
//返回队列头事件,即要求最快要执行的事件
CallbackRecord callbacks = mHead;
if (callbacks == null || callbacks.dueTime > now) {
return null;
}
//把头回调事件后面所有执行时间已经到了事件全部舍弃
CallbackRecord last = callbacks;
CallbackRecord next = last.next;
while (next != null) {
if (next.dueTime > now) {
last.next = null;
break;
}
last = next;
next = next.next;
}
//next表示的是未到执行时间且要求执行到时间最早的事件
mHead = next;
return callbacks;
}
取出当前帧需要执行的回调事件后,便会执行到该事件的run()方法,在使用这里会调用到CallbackRecord的run()方法。
private static final class CallbackRecord {
public CallbackRecord next;
public long dueTime;
public Object action; // Runnable or FrameCallback
public Object token; public void run(long frameTimeNanos) {
if (token == FRAME_CALLBACK_TOKEN) {
((FrameCallback)action).doFrame(frameTimeNanos);
} else {
((Runnable)action).run();
}
}
}
回想我们在ViewRootImpl中调用postCallback()方法的三个参数值,第一个事件类型为Choreographer.CALLBACK_TRAVERSAL,表示是绘制事件,用于指示该事件放入对应队列,第二个则是一个TraversalRunnable类型的Runnable,则赋值给了这里的action,第三个是null,所以上面代码的run()方法,实际执行到了TraversalRunnable的run()方法。
final class TraversalRunnable implements Runnable {
@Override
public void run() {
doTraversal();
}
}
该方法则调用到了doTraversal()方法,后续则调用到了ViewRootImpl.performTraversals()方法。由于run在了UI线程,所以后续到绘制动作也是在UI线程执行到。至此完成了Choroegrapher类的分析。