Handler,Looper,MessageQueue流程梳理

目的:handle的出现主要是为了解决线程间通讯。

  举个例子,android是不允许在主线程中访问网络,因为这样会阻塞主线程,影响性能,所以访问网络都是放在子线程中执行,对于网络返回的结果则需要显示在主线程中,handler就是连接主线程和子线程的桥梁。

1.handler基本使用方法

  看一下使用方法:

 public static final int EMPTY_MSG = 0;
@SuppressLint("HandlerLeak")
Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
switch (msg.what){
case 0:
Toast.makeText(MainActivitys.this, "接受到消息", Toast.LENGTH_SHORT).show();
break;
}
}
};
@Override
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main); new Thread(new Runnable() {
@Override
public void run() {
handler.sendEmptyMessage(0);
}
}).start();
}

  通过上边代码就完成了子线程向主线程发送消息的功能。

2. handler,Looper,MessageQueue 解释

  handler:负责发送和处理消息

  Looper:消息循环器,也可以理解为消息泵,主动地获取消息,并交给handler来处理

  MessageQueue:消息队列,用来存储消息

3.源码分析

  程序的启动是在ActivityThread的main方法中

public static void main(){
Looper.prepare(); //
Handler handler = new Handler();//
Looper.loop(); //
}

  Looper.prepare()会初始化当前线程的looper

 private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}

  会调用到sThreadLocal.set()方法,ThreadLocal是线程安全的,不同的线程获取到的值是不一样的,下面先分析一下ThreadLocal是如何做到线程安全。

    public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}

  不同的线程会设置不同的looper,下面看一下ThreadLocalMap是如何存储数据的

  

 ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
}

  ThreadLocalMap会创建一个数组,key是通过特殊的算法来创建出来,一个线程中会有一个ThreadLocalMap,这个map中会存多个ThreadLocal和values。

  下面看下ThreadLocalMap是如何set一个值的

  

private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not. Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal k = e.get(); if (k == key) {
e.value = value;
return;
} if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
} tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}

  其实是遍历threadLocalMap中的table,如果当前table中存在threadLocal这个key就更新,不存在就新建。ThreadLocal的set方法到此结束。

  下面看下Handler handler = new Handler()中执行了哪些操作:

  public Handler(Callback callback, boolean async) {
mLooper = Looper.myLooper();
mQueue = mLooper.mQueue; }

  重要的就是构造函数中这两个方法,在handler中初始化looper和messageQueue。这个就不展开讲了。

  

  下面看一下Looper.loop()这个步骤,我做了一些精简,把无关的代码去掉了。

   public static void loop() {
final Looper me = myLooper();
final MessageQueue queue = me.mQueue; for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
msg.target.dispatchMessage(msg);
msg.recycleUnchecked();
}
}

  queue.next()是个无限for循环,其实也是个阻塞方法,其中比较重要的是下面这个方法,其作用是不会一直循环。底层采用的是pipe/epoll机制。

nativePollOnce(ptr, nextPollTimeoutMillis);
 Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
} int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
} nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
} // Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
} // If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
} if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
} // Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
} if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
} // Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}

  message.next()返回消息之后会接着调用 msg.target.dispatchMessage(msg);在这个方法里边会进行判断,来决定执行哪一种回调。

  

  public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}

到此整个handler的流程就结束了。最后附上一张handler的时序图。

Handler,Looper,MessageQueue流程梳理

上一篇:Handler Looper MessageQueue 之间的关系


下一篇:1.1Linux 系统简介(学习过程)