python之OpenCv(四)---人脸识别

对特定图像进行识别,最关键的是要有识别对象的特征文件。OpenCV已经内置了人脸识别特征文件,我们只要使用OpenCV的CascadeClassifier类即可进行识别。

语法:

https://github.com/opencv/opencv.git  在这里可以下载特征文件,在data目录下

识别对象变量 = cv2.CascadeClassifier(特征文件)、、

识别对象

识别结果变量 = 识别对象变量.detectMultiScale(图片,参数1,参数2,。。。)

参数有:

  1、scaleFactor:  其原理是系统会以不同的区块大小对图片进行扫描,在进行特征对比。此参数用户设置区块的改变倍数,如无特别需求,一般设置为1.1

  2、minNeighbors  此为控制误检率参数,默认值为3

  3、minSize  设置最小的识别区块

  4、maxSize  设置最大的识别区块

  5、flags  此参数设置检测模式,可取值如下:

      cv2.CV_HAAR_SCALE_IMAGE   按比例检测

      cv2.CV_HAAR_DO_CANNY_PRUNING  利用Canny 边缘检测器排除一些边缘很少或很多的图像区域

      cv2.CV_HAAR_FIND_BIGGEST_OBJECT   只检测最大物体

      cv2.CV_HAAR_DO_ROUGH_SEARCH  只做初步检测

face = faceCascade.detectMultiScale(image,scakeFactor=1.1,minSize=(10,10),minNeighbors=5,flags = cv2.CASCADE_SCALE_IMAGE)

detectMultiScale 方法可以识别多个面部,返回值是一个列表

for (x,y,w,h) in face:

x,y 表示面部区域的左上角x,y坐标;w,h表示面部区域的宽度和高度

import cv2
#基本绘图
# import numpy
#
cv2.namedWindow("Image") #创建窗口
#
img = cv2.imread('20180703200225.jpg') #读取图像 #人脸识别 #img.shape[0] 获取图片的高度 img.shape[1] 获取图片的宽度 faceCascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml') faces = faceCascade.detectMultiScale(img,scaleFactor = 1.1,minNeighbors = 5,minSize = (10,10),flags = cv2.CASCADE_SCALE_IMAGE) cv2.putText(img,"Find"+str(len(faces))+"faces",(10,img.shape[0]-5),cv2.FONT_HERSHEY_SIMPLEX,1,(255,232,133),2) for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(128,255,0),2)
print(x,y,w,h) #cv2.imshow('Image',img)
cv2.imwrite('test.jpg',img)
cv2.waitKey(0)
cv2.destroyAllWindow()

  

上一篇:校友信息管理系统&SNS互动平台之用户需求及概要设计


下一篇:Linux 下执行本目录的可执行文件(命令)为什么需要在文件名前加“./”