前言
这部分主要讲如何修改Faster R-CNN的代码,来训练自己的数据集,首先确保你已经编译安装了py-faster-rcnn,并且准备好了数据集,具体可参考我上一篇文章。
py-faster-rcnn文件结构
- caffe-fast-rcnn
这里是caffe框架目录,用来进行caffe编译安装 - data
用来存放pre trained模型,比如ImageNet上的,要训练的数据集以及读取文件的cache缓存。 - experiments
存放配置文件,运行的log文件,另外这个目录下有scripts 用来获取imagenet的模型,以及作者训练好的fast rcnn模型,以及相应的pascal-voc数据集 - lib
用来存放一些python接口文件,如其下的datasets主要负责数据库读取,config负责cnn一些训练的配置选项 - matlab
放置matlab与python的接口,用matlab来调用实现detection - models
里面存放了三个模型文件,小型网络的ZF,大型网络VGG16,中型网络VGG_CNN_M_1024 - output
这里存放的是训练完成后的输出目录,默认会在default文件夹下 - tools
里面存放的是训练和测试的Python文件
修改训练代码
所要操作文件结构介绍
所有需要修改的训练代码都放到了py-faster-rcnn/lib
文件夹下,我们进入文件夹,里面主要用到的文件夹有:
- datasets:该目录下主要存放读写数据接口。
- fast-rcnn:该目录下主要存放的是python的训练和测试脚本,以及训练的配置文件。
- roi_data_layer:该目录下主要存放一些ROI处理操作文件。
- utils:该目录下主要存放一些通用操作比如非极大值nms,以及计算bounding box的重叠率等常用功能。
读写数据接口都放在datasets/
文件夹下,我们进入文件夹,里面主要文件有:
- factory.py:这是个工厂类,用类生成imdb类并且返回数据库共网络训练和测试使用。
- imdb.py:这是数据库读写类的基类,分装了许多db的操作,但是具体的一些文件读写需要继承继续读写
- pascal_voc.py:这是imdb的子类,里面定义许多函数用来进行所有的数据读写操作。
从上面可以看出,我们主要对pascal_voc.py
文件进行修改。
pascal_voc.py文件代码分析
我们主要是基于pasca_voc.py
这个文件进行修改,里面有几个重要的函数需要介绍:
123456789101112131415161718192021 |
def (self, image_set, devkit_path=None): def image_path_at(self, i): # 根据第i个图像样本返回其对应的path,其调用image_path_from_index(self, index):作为其具体实现。 def image_path_from_index(self, index): # 实现了 image_path的具体功能def _load_image_set_index(self): # 加载了样本的list文件,根据ImageSet/Main/文件夹下的文件进行image_index的加载。 def _get_default_path(self): # 获得数据集地址def gt_roidb(self): # 读取并返回ground_truth的db def rpn_roidb(self): # 加载rpn产生的roi,调用_load_rpn_roidb(self, gt_roidb):函数作为其具体实现 def _load_rpn_roidb(self, gt_roidb): # 加载rpn_file def _load_pascal_annotation(self, index): # 这个函数是读取gt的具体实现 def _write_voc_results_file(self, all_boxes): # 将voc的检测结果写入到文件 def _do_python_eval(self, output_dir = 'output'): # 根据python的evluation接口来做结果的分析 |
修改pascal_voc.py文件
要想对自己的数据集进行读取,我们主要是进行pascal_voc.py
文件的修改,但是为了不破坏源文件,我们可以将pascal_voc.py
进行拷贝复制,从而进行修改。这里我将pascal_voc.py
文件拷贝成caltech.py
文件:
1 |
cp pascal_voc.py caltech.py |
下面我们对caltech.py
文件进行修改,在这里我会一一列举每个我修改过的函数。这里按照文件中的顺序排列。。
init函数修改
这里是原始的pascal_voc的init函数,在这里,由于我们自己的数据集往往比voc的数据集要更简单的一些,在作者额代码里面用了很多的路径拼接,我们不用去迎合他的格式,将这些操作简单化即可。
原始的函数
123456789101112131415161718192021222324252627282930313233 |
def (self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'use_diff' : False, 'matlab_eval' : False, 'rpn_file' : None, 'min_size' : 2} assert os.path.exists(self._devkit_path), 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), 'Path does not exist: {}'.format(self._data_path) |
修改后的函数
123456789101112131415161718192021222324252627 |
def (self, image_set, devkit_path=None):# initial function,把year删除 imdb.__init__(self, image_set) # imageset is train.txt or test.txt self._image_set = image_set self._devkit_path = devkit_path # devkit_path = '~/py-faster-rcnn/data/VOCdevkit' self._data_path = os.path.join(self._devkit_path, 'Caltech') # _data_path = '~/py-faster-rcnn/data/VOCdevkit/Caltech' self._classes = ('__background__', # always index 0 'person') # 我只有‘background’和‘person’两类 self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'use_diff' : True, # 我把use_diff改为true了,因为我的数据集xml文件中没有<difficult>标签,否则之后训练会报错 'matlab_eval' : False, 'rpn_file' : None, 'min_size' : 2} assert os.path.exists(self._devkit_path), 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), 'Path does not exist: {}'.format(self._data_path) |
_load_image_set_index函数修改
原始的函数
12345678910111213 |
def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main', self._image_set + '.txt') assert os.path.exists(image_set_file), 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] return image_index |
修改后的函数
1234567891011121314 |
def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt # /home/jk/py-faster-rcnn/data/VOCdevkit/Caltech/ImageSets/Main/train.txt image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main', self._image_set + '.txt') assert os.path.exists(image_set_file), 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] return image_index |
其实没改,只是加了一行注释,从而更好理解路径问题。
_get_default_path函数修改
直接注释即可
_load_pascal_annotation函数修改
原始的函数
123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self._data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') if not self.config['use_diff']: # Exclude the samples labeled as difficult non_diff_objs = [ obj for obj in objs if int(obj.find('difficult').text) == 0] # if len(non_diff_objs) != len(objs): # print 'Removed {} difficult objects'.format( # len(objs) - len(non_diff_objs)) objs = non_diff_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): bbox = obj.find('bndbox') # Make pixel indexes 0-based x1 = float(bbox.find('xmin').text) - 1 y1 = float(bbox.find('ymin').text) - 1 x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 cls = self._class_to_ind[obj.find('name').text.lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_overlaps' : overlaps, 'flipped' : False, 'seg_areas' : seg_areas} |
修改后的函数
12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self._data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') if not self.config['use_diff']: # Exclude the samples labeled as difficult non_diff_objs = [ obj for obj in objs if int(obj.find('difficult').text) == 0] # if len(non_diff_objs) != len(objs): # print 'Removed {} difficult objects'.format( # len(objs) - len(non_diff_objs)) objs = non_diff_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): bbox = obj.find('bndbox') # Make pixel indexes 0-based # 这里我把‘-1’全部删除掉了,防止有的数据是0开始,然后‘-1’导致变为负数,产生AssertError错误 x1 = float(bbox.find('xmin').text) y1 = float(bbox.find('ymin').text) x2 = float(bbox.find('xmax').text) y2 = float(bbox.find('ymax').text) cls = self._class_to_ind[obj.find('name').text.lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_overlaps' : overlaps, 'flipped' : False, 'seg_areas' : seg_areas} |
main函数修改
原始的函数
12345 |
if __name__ == '__main__': from datasets.pascal_voc import pascal_voc d = pascal_voc('trainval', '2007') res = d.roidb from IPython import embed; embed() |
修改后的函数
12345 |
if __name__ == '__main__': from datasets.caltech import caltech # 导入caltech包 d = caltech('train', '/home/jk/py-faster-rcnn/data/VOCdevkit')#调用构造函数,传入imageset和路径 res = d.roidb from IPython import embed; embed() |
至此读取接口修改完毕,该文件中的其他函数并未修改。
修改factory.py文件
当网络训练时会调用factory里面的get方法获得相应的imdb,首先在文件头import 把pascal_voc改成caltech
在这个文件作者生成了多个数据库的路径,我们自己数据库只要给定根路径即可,修改主要有以下4个
- 函数之后有两个多级的for循环,也将其注释
- 直接定义
devkit
。 - 利用创建自己的训练和测试的imdb set,这里的name的格式为
caltech_{}
。
原始的代码
123456789101112131415161718192021222324252627282930313233343536373839404142 |
# --------------------------------------------------------# Fast R-CNN# Copyright (c) 2015 Microsoft# Licensed under The MIT License [see LICENSE for details]# Written by Ross Girshick# --------------------------------------------------------"""Factory method for easily getting imdbs by name."""__sets = {}from datasets.pascal_voc import pascal_vocfrom datasets.coco import cocoimport numpy as np# Set up voc_<year>_<split> using selective search "fast" modefor year in ['2007', '2012']: for split in ['train', 'val', 'trainval', 'test']: name = 'voc_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: pascal_voc(split, year))# Set up coco_2014_<split>for year in ['2014']: for split in ['train', 'val', 'minival', 'valminusminival']: name = 'coco_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: coco(split, year))# Set up coco_2015_<split>for year in ['2015']: for split in ['test', 'test-dev']: name = 'coco_{}_{}'.format(year, split) __sets[name] = (lambda split=split, year=year: coco(split, year))def get_imdb(name): """Get an imdb (image database) by name.""" if not __sets.has_key(name): raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]()def list_imdbs(): """List all registered imdbs.""" return __sets.keys() |
修改后的文件
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
# --------------------------------------------------------# Fast R-CNN# Copyright (c) 2015 Microsoft# Licensed under The MIT License [see LICENSE for details]# Written by Ross Girshick# --------------------------------------------------------"""Factory method for easily getting imdbs by name."""__sets = {}from datasets.caltech import caltech # 导入caltech包#from datasets.coco import coco#import numpy as npdevkit = '/home/jk/py-faster-rcnn/data/VOCdevkit'# Set up voc_<year>_<split> using selective search "fast" mode#for year in ['2007', '2012']:# for split in ['train', 'val', 'trainval', 'test']:# name = 'voc_{}_{}'.format(year, split)# __sets[name] = (lambda split=split, year=year: pascal_voc(split, year))# Set up coco_2014_<split>#for year in ['2014']:# for split in ['train', 'val', 'minival', 'valminusminival']:# name = 'coco_{}_{}'.format(year, split)# __sets[name] = (lambda split=split, year=year: coco(split, year))# Set up coco_2015_<split>#for year in ['2015']:# for split in ['test', 'test-dev']:# name = 'coco_{}_{}'.format(year, split)# __sets[name] = (lambda split=split, year=year: coco(split, year))# Set up caltech_<split>for split in ['train', 'test']: name = 'caltech_{}'.format(split) __sets[name] = (lambda imageset=split, devkit=devkit: caltech(imageset, devkit))def get_imdb(name): """Get an imdb (image database) by name.""" if not __sets.has_key(name): raise KeyError('Unknown dataset: {}'.format(name)) return __sets[name]()def list_imdbs(): """List all registered imdbs.""" return __sets.keys() |
修改init.py文件
在行首添加上 from .caltech import caltech
总结
- 坐标的顺序我再说一次,要左上右下,并且x1必须要小于x2,这个是基本,反了会在坐标水平变换的时候会出错,坐标从0开始,如果已经是0,则不需要再-1。
- 训练图像的大小不要太大,否则生成的OP也会太多,速度太慢,图像样本大小最好调整到500,600左右,然后再提取OP
- 如果读取并生成pkl文件之后,实际数据内容或者顺序还有问题,记得要把data/cache/下面的pkl文件给删掉。
参考博客
原文:大专栏 深度学习实践经验:用Faster R-CNN训练Caltech数据集——修改读写接口