>>> import numpy as np
>>> import scipy.sparse as spr
>>> import nimfa
>>> V=spr.csr_matrix([[1, 0, 2, 4], [0, 0, 6, 3], [4, 0, 5, 6]])
>>> print(V)
(0, 0) 1
(0, 2) 2
(0, 3) 4
(1, 2) 6
(1, 3) 3
(2, 0) 4
(2, 2) 5
(2, 3) 6
>>> print('Target:\n%s' % V.todense())
Target:
[[1 0 2 4]
[0 0 6 3]
[4 0 5 6]]
>>> nmf=nimfa.Nmf(V,max_iter=200,rank=2,update='euclidean',objective='fro')
>>> nmf_fit=nmf()
>>> W=nmf_fit.basis()
>>>> print(W)
(0, 0) 3.044943595437404
(1, 1) 4.510880380218402
(1, 0) 2.0362823494561906
(2, 0) 5.392166550228975
>>> print('Basis matrix:\n%s' %W.todense())
Basis matrix:
[[3.0449436 0. ]
[2.03628235 4.51088038]
[5.39216655 0. ]]
>>> H=nmf_fit.coef()
>>> print('Mixtrue matrix:\n%s' % H.todense())
Mixtrue matrix:
[[0.5792295 0. 0. 1.19174817]
[0. 0. 1.33011729 0. ]]
>>> print('Euclidean distance: %5.3f' % nmf_fit.distance(metric='euclidean'))
Euclidean distance: 32.391
>>> sm = nmf_fit.summary()
print('Sparseness Basis: %5.3f Mixture: %5.3f' % (sm['sparseness'][0], sm['sparseness'][1]))
print('Iterations: %d' % sm['n_iter'])
print('Target estimate:\n%s' % np.dot(W.todense(), H.todense()))>>> print('Sparseness Basis: %5.3f Mixture: %5.3f' % (sm['sparseness'][0], sm['sparseness'][1]))
Sparseness Basis: 0.586 Mixture: 1.000
>>> print('Iterations: %d' % sm['n_iter'])
Iterations: 5
>>> print('Target estimate:\n%s' % np.dot(W.todense(), H.todense()))
Target estimate:
[[1.76372117 0. 0. 3.62880595]
[1.17947481 0. 6. 2.42673576]
[3.12330196 0. 0. 6.4261046 ]]