题目大意:求 $$\sum\limits_{i=1}a\sum\limits_{j=1}b[gcd(i,j)=c]$$
题解:学会了狄利克雷卷积。
\[\epsilon=\mu \ast 1
\]
\]
将艾弗森表达式转化成卷积的形式,在调换求和顺序,消去不必要的和式。最后利用除法分块+预处理的莫比乌斯函数前缀和在 \(O(\sqrt n)\) 时间内单次回答询问。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 5e4 + 10;
int mu[maxn], sum[maxn];
vector<int> primes;
bool vis[maxn];
void RunLinearSieve() {
mu[1] = 1, vis[1] = 1;
int n = 5e4;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
primes.push_back(i);
mu[i] = -1;
}
for (int j = 0; i * primes[j] <= n; j++) {
vis[i * primes[j]] = 1;
if (i % primes[j] == 0) {
mu[i * primes[j]] = 0;
break;
} else {
mu[i * primes[j]] = -mu[i];
}
}
}
for (int i = 1; i <= n; i++) {
sum[i] = sum[i - 1] + mu[i];
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T;
cin >> T;
RunLinearSieve();
while (T--) {
LL a, b, c;
cin >> a >> b >> c;
a /= c, b /= c;
LL range = min(a, b);
LL ans = 0;
for (int i = 1; i <= range; i++) {
int j = min(a / (a / i), b / (b / i));
ans += (LL)(sum[j] - sum[i - 1]) * (a / i) * (b / i);
i = j;
}
cout << ans << endl;
}
return 0;
}