"""Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mital, Jan. 2016""" # %% Imports import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # %% Let's create some toy data plt.ion() n_observations = 100 fig, ax = plt.subplots(1, 1) xs = np.linspace(-3, 3, n_observations) ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations) ax.scatter(xs, ys) fig.show() plt.draw() # %% tf.placeholders for the input and output of the network. Placeholders are # variables which we need to fill in when we are ready to compute the graph. X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) # %% Instead of a single factor and a bias, we'll create a polynomial function # of different polynomial degrees. We will then learn the influence that each # degree of the input (X^0, X^1, X^2, ...) has on the final output (Y). Y_pred = tf.Variable(tf.random_normal([1]), name='bias') for pow_i in range(1, 5): W = tf.Variable(tf.random_normal([1]), name='weight_%d' % pow_i) Y_pred = tf.add(tf.mul(tf.pow(X, pow_i), W), Y_pred) # %% Loss function will measure the distance between our observations # and predictions and average over them. cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1) # %% if we wanted to add regularization, we could add other terms to the cost, # e.g. ridge regression has a parameter controlling the amount of shrinkage # over the norm of activations. the larger the shrinkage, the more robust # to collinearity. # cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W]))) # %% Use gradient descent to optimize W,b # Performs a single step in the negative gradient learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # %% We create a session to use the graph n_epochs = 1000 with tf.Session() as sess: # Here we tell tensorflow that we want to initialize all # the variables in the graph so we can use them sess.run(tf.initialize_all_variables()) # Fit all training data prev_training_cost = 0.0 for epoch_i in range(n_epochs): for (x, y) in zip(xs, ys): sess.run(optimizer, feed_dict={X: x, Y: y}) training_cost = sess.run( cost, feed_dict={X: xs, Y: ys}) print(training_cost) if epoch_i % 100 == 0: ax.plot(xs, Y_pred.eval( feed_dict={X: xs}, session=sess), 'k', alpha=epoch_i / n_epochs) fig.show() plt.draw() # Allow the training to quit if we've reached a minimum if np.abs(prev_training_cost - training_cost) < 0.000001: break prev_training_cost = training_cost ax.set_ylim([-3, 3]) fig.show() plt.waitforbuttonpress()