E 旗鼓相当的对手

题:https://ac.nowcoder.com/acm/contest/4853/E

题意:对于一对点(u,v)要是dis(u,v)==k,就会对这对点的LCA产生a[x]+a[y]的贡献(LCA!=u&&LCA!=v)

分析:简单的dsu,把每个点当作LCA去统计子树深度个数,经过LCA的路径就是深度之和;

   对于每个点u深度对应要达成k的深度要为2*deep[LCA]-deep[u]+k;

E 旗鼓相当的对手
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
typedef long long ll;
const int M=2e5+5;
ll ans[M];
ll val[M],sz[M],son[M],a[M],cnt[M],deep[M];
ll k,n;
vector<ll>g[M];
ll nownum;
void dfs1(ll u,ll fa){
    sz[u]=1;
    for(auto v:g[u]){
        if(v!=fa){
            deep[v]=deep[u]+1;
            dfs1(v,u);
            sz[u]+=sz[v];
            if(sz[v]>sz[son[u]])
                son[u]=v;
        }
    }
}

void add(ll u,ll fa,ll x){
    cnt[deep[u]]+=x;
    val[deep[u]]+=x*a[u];
    for(auto v:g[u]){
        if(v!=fa)
            add(v,u,x);
    }
}
void cal(ll u,ll fa,ll LCA){
    ll need=k+deep[LCA]*2-deep[u];
    if(need>0){
        nownum+=val[need];
        nownum+=cnt[need]*a[u];
    }
    for(auto v:g[u])
        if(v!=fa)
            cal(v,u,LCA);
}
void dfs2(ll u,ll fa,ll sign){
    //cout<<u<<endl;
    for(auto v:g[u]){
        if(v!=fa&&son[u]!=v)
            dfs2(v,u,0);
    }
    if(son[u])
        dfs2(son[u],u,1);
    for(auto v:g[u])
        if(v!=fa&&v!=son[u])
            cal(v,u,u),add(v,u,1);
    ans[u]=nownum;
    cnt[deep[u]]++,val[deep[u]]+=a[u];
    if(!sign)
        add(u,fa,-1);
    nownum=0;

}
int main(){
    scanf("%lld%lld",&n,&k);
    for(ll i=1;i<=n;i++)
        scanf("%lld",&a[i]);
    for(ll u,v,i=1;i<n;i++){
        scanf("%lld%lld",&u,&v);
        g[u].pb(v);
        g[v].pb(u);
    }
    dfs1(1,0);

    dfs2(1,0,1);
    for(ll i=1;i<=n;i++)
        printf("%lld ",ans[i]);
    return 0;
}
View Code

 

上一篇:洛谷P4281(AHOI2008)-紧急集合(LCA)


下一篇:P3379 【模板】最近公共祖先(LCA)