对于给定的训练数据集,朴素贝叶斯法首先基于iid假设学习输入/输出的联合分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
一、目标
设输入空间是n维向量的集合,输出空间为类标记集合= {c1, c2, ..., ck}。X是定义在上的随机变量,Y是定义在上的随机变量。P(X, Y)是X和Y的联合概率分布。训练数据集 T = {(x1, y1), (x2, y2), ..., (xN, yN)}由P(X, Y)独立同分布产生。
朴素贝叶斯法的学习目标是习得联合概率分布P(X, Y),以此计算后验概率,从而将实例分到后验概率最大的类中。由于P(X, Y) = P(Y)P(X|Y),因此学习目标可以具体到先验概率分布P(Y = ck)和条件概率分布P(X = x|Y = ck)(k = 1, 2, ..., K)。
二、后验概率最大化的原理
最大化后验概率等价于最小化期望损失(expected loss),或者说条件风险(conditional risk)。设选择0-1损失函数
其中f(X)是分类决策函数,则期望损失为
由于期望是对联合分布P(X, Y)取的,因此上式可推出
由贝叶斯判定准则(Bayes decision rule):最小化总体风险,只需在每个样本上选择那个能使条件风险最小的类别标记。于是
这样一来,根据期望风险最小化准则就得到后验概率从最大化准则:
另一方面,由条件独立性假设
与贝叶斯定理
得到
由于上式中分布对ck都是相同的,因此
三、参数估计:极大似然估计
先验概率P(Y = ck)的极大似然估计:
条件概率P(X(j) = ajl|Y = ck)的极大似然估计:
其中设第j个特征x(j)可能的取值集合为{aj1, aj2, ..., ajSj},I为指示函数。
四、算法伪码及实现
书中给中了算法的伪码
下面给出朴素贝叶斯算法的具体实现
『python』代码摘自https://www.cnblogs.com/yiyezhouming/p/7364688.html
#coding:utf-8 # 极大似然估计 朴素贝叶斯算法 import pandas as pd import numpy as np class NaiveBayes(object): def getTrainSet(self): dataSet = pd.read_csv('C://pythonwork//practice_data//naivebayes_data.csv') dataSetNP = np.array(dataSet) #将数据由dataframe类型转换为数组类型 trainData = dataSetNP[:,0:dataSetNP.shape[1]-1] #训练数据x1,x2 labels = dataSetNP[:,dataSetNP.shape[1]-1] #训练数据所对应的所属类型Y return trainData, labels def classify(self, trainData, labels, features): #求labels中每个label的先验概率 labels = list(labels) #转换为list类型 P_y = {} #存入label的概率 for label in labels: P_y[label] = labels.count(label)/float(len(labels)) # p = count(y) / count(Y) #求label与feature同时发生的概率 P_xy = {} for y in P_y.keys(): y_index = [i for i, label in enumerate(labels) if label == y] # labels中出现y值的所有数值的下标索引 for j in range(len(features)): # features[0] 在trainData[:,0]中出现的值的所有下标索引 x_index = [i for i, feature in enumerate(trainData[:,j]) if feature == features[j]] xy_count = len(set(x_index) & set(y_index)) # set(x_index)&set(y_index)列出两个表相同的元素 pkey = str(features[j]) + '*' + str(y) P_xy[pkey] = xy_count / float(len(labels)) #求条件概率 P = {} for y in P_y.keys(): for x in features: pkey = str(x) + '|' + str(y) P[pkey] = P_xy[str(x)+'*'+str(y)] / float(P_y[y]) #P[X1/Y] = P[X1Y]/P[Y] #求[2,'S']所属类别 F = {} #[2,'S']属于各个类别的概率 for y in P_y: F[y] = P_y[y] for x in features: F[y] = F[y]*P[str(x)+'|'+str(y)] #P[y/X] = P[X/y]*P[y]/P[X],分母相等,比较分子即可,所以有F=P[X/y]*P[y]=P[x1/Y]*P[x2/Y]*P[y] features_label = max(F, key=F.get) #概率最大值对应的类别 return features_label if __name__ == '__main__': nb = NaiveBayes() # 训练数据 trainData, labels = nb.getTrainSet() # x1,x2 features = [2,'S'] # 该特征应属于哪一类 result = nb.classify(trainData, labels, features) print features,'属于',result