Description
Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑。 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路 口。Elaxia耐力不太好,他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。
Input
第一行:两个数N,M。表示十字路口数和街道数。 接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。
Output
两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。
Sample Input
7 10
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
2 5 5
3 6 6
5 7 1
6 7 1
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
2 5 5
3 6 6
5 7 1
6 7 1
Sample Output
2 11
HINT
对于30%的数据,N ≤ 20,M ≤ 120。
对于100%的数据,N ≤ 200,M ≤ 20000。
每个点拆点限制流量只能为1,以防止重复经过,然后套最小费用流,中间统计增广几次
#include<cstdio>
#include<cstring>
using namespace std;
const int N=,inf=;
struct ee{int to,next,f,w;}e[N*];
int S,T,cnt=,n,k,ans,timer,m,u,v,w;
int head[N],dis[N],pre[N],q[N];
bool inq[N];
void ins(int u,int v,int f,int w){
e[++cnt].to=v,e[cnt].next=head[u],e[cnt].f=f,e[cnt].w=w,head[u]=cnt;
e[++cnt].to=u,e[cnt].next=head[v],e[cnt].f=,e[cnt].w=-w,head[v]=cnt;
} bool spfa(){
for (int i=;i<=T;i++) dis[i]=inf;
int h=,t=;
q[t]=S;dis[S]=;inq[S]=;
while (h!=t){
int now=q[++h];if(h==) h=;
for (int i=head[now];i;i=e[i].next){
int v=e[i].to;
if (dis[v]>dis[now]+e[i].w&&e[i].f){
dis[v]=dis[now]+e[i].w;
pre[v]=i;
if (!inq[v]){
q[++t]=v;if (t==) t=;
inq[v]=;
}
}
}
inq[now]=;
}
if (dis[T]==inf) return ;
return ;
} void updata(){
int tmp=T;
while (tmp!=S){
int l=pre[tmp],v=e[l].to;
e[l].f-=;e[l^].f+=;
tmp=e[l^].to;
}
ans+=dis[T];
} int main(){
scanf("%d%d",&n,&m);
S=;T=n*+;
ins(S,,inf,);ins(*n,T,inf,);
for (int i=;i<n;i++) ins(i,i+n,,);
ins(,+n,inf,);ins(n,n+n,inf,);
for (int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
ins(u+n,v,,w);
}
while (spfa()) {
timer++;
updata();
}
printf("%d %d",timer,ans);
}