Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output
no
no
yes
no
yes
yes
题意:输入两个数p,a;如果a的p次方对p取余等于a,并且p不是素数,则输出“yes”,否则输出“no”.
这里用到快速幂求余技巧
#include <iostream>
#include <stdio.h>
using namespace std;
bool isprime(long long n){
for (long long i = ; i*i <= n; i++){
if (n%i == )
return false;
}
return true;
}
long long qmod(long long a, long long r, long long m){
long long res = ;
while (r){
if (r & )
res = res*a%m;
a = a*a%m;
r >>= ;
}
return res;
}
int main(){
long long p, a;
while (scanf("%I64d%I64d", &p, &a) && p&&a){
if (!isprime(p) && qmod(a, p, p) == a)
printf("yes\n");
else
printf("no\n");
}
return ;
}